SILENT KILLERPanel

Current Path: > > > > usr > lib > python3.6 > > site-packages > chardet


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: ////usr/lib/python3.6//site-packages/chardet

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
cli Directory - -
__init__.py File 1559 bytes April 12 2017 18:41:25.
big5freq.py File 31254 bytes April 11 2017 17:51:33.
big5prober.py File 1757 bytes April 11 2017 17:51:33.
chardistribution.py File 9411 bytes April 11 2017 19:52:09.
charsetgroupprober.py File 3787 bytes April 11 2017 17:51:33.
charsetprober.py File 5110 bytes June 08 2017 14:21:53.
codingstatemachine.py File 3590 bytes April 11 2017 17:51:33.
compat.py File 1134 bytes June 08 2017 14:32:38.
cp949prober.py File 1855 bytes April 11 2017 17:51:33.
enums.py File 1661 bytes April 11 2017 17:51:33.
escprober.py File 3950 bytes April 11 2017 17:51:33.
escsm.py File 10510 bytes April 11 2017 17:51:33.
eucjpprober.py File 3749 bytes April 11 2017 17:51:33.
euckrfreq.py File 13546 bytes April 11 2017 17:51:33.
euckrprober.py File 1748 bytes April 11 2017 17:51:33.
euctwfreq.py File 31621 bytes April 11 2017 20:48:55.
euctwprober.py File 1747 bytes April 11 2017 17:51:33.
gb2312freq.py File 20715 bytes April 11 2017 17:51:33.
gb2312prober.py File 1754 bytes April 11 2017 17:51:33.
hebrewprober.py File 13838 bytes June 08 2017 14:21:53.
jisfreq.py File 25777 bytes April 11 2017 17:51:33.
jpcntx.py File 19643 bytes April 11 2017 17:51:33.
langbulgarianmodel.py File 12839 bytes June 08 2017 14:32:38.
langcyrillicmodel.py File 17948 bytes June 08 2017 14:32:38.
langgreekmodel.py File 12688 bytes June 08 2017 14:32:38.
langhebrewmodel.py File 11345 bytes June 08 2017 14:32:38.
langhungarianmodel.py File 12592 bytes June 08 2017 14:32:38.
langthaimodel.py File 11290 bytes June 08 2017 14:32:38.
langturkishmodel.py File 11102 bytes June 08 2017 14:32:38.
latin1prober.py File 5370 bytes June 08 2017 14:21:53.
mbcharsetprober.py File 3413 bytes April 11 2017 17:51:33.
mbcsgroupprober.py File 2012 bytes April 11 2017 17:51:33.
mbcssm.py File 25481 bytes April 11 2017 17:51:33.
sbcharsetprober.py File 5657 bytes June 08 2017 14:32:38.
sbcsgroupprober.py File 3546 bytes June 08 2017 14:32:38.
sjisprober.py File 3774 bytes April 11 2017 17:51:33.
universaldetector.py File 12485 bytes June 08 2017 14:32:38.
utf8prober.py File 2766 bytes April 11 2017 17:51:33.
version.py File 242 bytes June 08 2017 14:32:13.

Reading File: ////usr/lib/python3.6//site-packages/chardet/sbcharsetprober.py

######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Universal charset detector code.
#
# The Initial Developer of the Original Code is
# Netscape Communications Corporation.
# Portions created by the Initial Developer are Copyright (C) 2001
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
#   Mark Pilgrim - port to Python
#   Shy Shalom - original C code
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301  USA
######################### END LICENSE BLOCK #########################

from .charsetprober import CharSetProber
from .enums import CharacterCategory, ProbingState, SequenceLikelihood


class SingleByteCharSetProber(CharSetProber):
    SAMPLE_SIZE = 64
    SB_ENOUGH_REL_THRESHOLD = 1024  #  0.25 * SAMPLE_SIZE^2
    POSITIVE_SHORTCUT_THRESHOLD = 0.95
    NEGATIVE_SHORTCUT_THRESHOLD = 0.05

    def __init__(self, model, reversed=False, name_prober=None):
        super(SingleByteCharSetProber, self).__init__()
        self._model = model
        # TRUE if we need to reverse every pair in the model lookup
        self._reversed = reversed
        # Optional auxiliary prober for name decision
        self._name_prober = name_prober
        self._last_order = None
        self._seq_counters = None
        self._total_seqs = None
        self._total_char = None
        self._freq_char = None
        self.reset()

    def reset(self):
        super(SingleByteCharSetProber, self).reset()
        # char order of last character
        self._last_order = 255
        self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
        self._total_seqs = 0
        self._total_char = 0
        # characters that fall in our sampling range
        self._freq_char = 0

    @property
    def charset_name(self):
        if self._name_prober:
            return self._name_prober.charset_name
        else:
            return self._model['charset_name']

    @property
    def language(self):
        if self._name_prober:
            return self._name_prober.language
        else:
            return self._model.get('language')

    def feed(self, byte_str):
        if not self._model['keep_english_letter']:
            byte_str = self.filter_international_words(byte_str)
        if not byte_str:
            return self.state
        char_to_order_map = self._model['char_to_order_map']
        for i, c in enumerate(byte_str):
            # XXX: Order is in range 1-64, so one would think we want 0-63 here,
            #      but that leads to 27 more test failures than before.
            order = char_to_order_map[c]
            # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
            #      CharacterCategory.SYMBOL is actually 253, so we use CONTROL
            #      to make it closer to the original intent. The only difference
            #      is whether or not we count digits and control characters for
            #      _total_char purposes.
            if order < CharacterCategory.CONTROL:
                self._total_char += 1
            if order < self.SAMPLE_SIZE:
                self._freq_char += 1
                if self._last_order < self.SAMPLE_SIZE:
                    self._total_seqs += 1
                    if not self._reversed:
                        i = (self._last_order * self.SAMPLE_SIZE) + order
                        model = self._model['precedence_matrix'][i]
                    else:  # reverse the order of the letters in the lookup
                        i = (order * self.SAMPLE_SIZE) + self._last_order
                        model = self._model['precedence_matrix'][i]
                    self._seq_counters[model] += 1
            self._last_order = order

        charset_name = self._model['charset_name']
        if self.state == ProbingState.DETECTING:
            if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
                confidence = self.get_confidence()
                if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
                    self.logger.debug('%s confidence = %s, we have a winner',
                                      charset_name, confidence)
                    self._state = ProbingState.FOUND_IT
                elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
                    self.logger.debug('%s confidence = %s, below negative '
                                      'shortcut threshhold %s', charset_name,
                                      confidence,
                                      self.NEGATIVE_SHORTCUT_THRESHOLD)
                    self._state = ProbingState.NOT_ME

        return self.state

    def get_confidence(self):
        r = 0.01
        if self._total_seqs > 0:
            r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
                 self._total_seqs / self._model['typical_positive_ratio'])
            r = r * self._freq_char / self._total_char
            if r >= 1.0:
                r = 0.99
        return r

SILENT KILLER Tool