SILENT KILLERPanel

Current Path: > > lib64 > > python3.6


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //lib64//python3.6

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.6m-x86_64-linux-gnu Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
test Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
__future__.py File 4841 bytes December 23 2018 21:37:14.
__phello__.foo.py File 64 bytes December 23 2018 21:37:14.
_bootlocale.py File 1301 bytes December 23 2018 21:37:14.
_collections_abc.py File 26392 bytes December 23 2018 21:37:14.
_compat_pickle.py File 8749 bytes December 23 2018 21:37:14.
_compression.py File 5340 bytes December 23 2018 21:37:14.
_dummy_thread.py File 5118 bytes December 23 2018 21:37:14.
_markupbase.py File 14598 bytes December 23 2018 21:37:14.
_osx_support.py File 19138 bytes December 23 2018 21:37:14.
_pydecimal.py File 230228 bytes December 23 2018 21:37:14.
_pyio.py File 88097 bytes December 23 2018 21:37:14.
_sitebuiltins.py File 3115 bytes December 23 2018 21:37:14.
_strptime.py File 24747 bytes December 23 2018 21:37:14.
_sysconfigdata_dm_linux_x86_64-linux-gnu.py File 30191 bytes July 01 2025 22:10:37.
_sysconfigdata_m_linux_x86_64-linux-gnu.py File 30367 bytes July 01 2025 22:14:06.
_threading_local.py File 7214 bytes December 23 2018 21:37:14.
_weakrefset.py File 5705 bytes December 23 2018 21:37:14.
abc.py File 8727 bytes December 23 2018 21:37:14.
aifc.py File 32454 bytes December 23 2018 21:37:14.
antigravity.py File 477 bytes December 23 2018 21:37:14.
argparse.py File 90372 bytes December 23 2018 21:37:14.
ast.py File 12166 bytes December 23 2018 21:37:14.
asynchat.py File 11328 bytes December 23 2018 21:37:14.
asyncore.py File 20159 bytes December 23 2018 21:37:14.
base64.py File 20388 bytes December 23 2018 21:37:14.
bdb.py File 23556 bytes December 23 2018 21:37:14.
binhex.py File 13954 bytes December 23 2018 21:37:14.
bisect.py File 2595 bytes December 23 2018 21:37:14.
bz2.py File 12478 bytes December 23 2018 21:37:14.
cProfile.py File 5380 bytes December 23 2018 21:37:14.
calendar.py File 23213 bytes December 23 2018 21:37:14.
cgi.py File 37219 bytes July 01 2025 22:09:53.
cgitb.py File 12018 bytes December 23 2018 21:37:14.
chunk.py File 5425 bytes December 23 2018 21:37:14.
cmd.py File 14860 bytes December 23 2018 21:37:14.
code.py File 10614 bytes December 23 2018 21:37:14.
codecs.py File 36276 bytes December 23 2018 21:37:14.
codeop.py File 5994 bytes December 23 2018 21:37:14.
colorsys.py File 4064 bytes December 23 2018 21:37:14.
compileall.py File 12125 bytes December 23 2018 21:37:14.
configparser.py File 53592 bytes December 23 2018 21:37:14.
contextlib.py File 13162 bytes December 23 2018 21:37:14.
copy.py File 8815 bytes December 23 2018 21:37:14.
copyreg.py File 7007 bytes December 23 2018 21:37:14.
crypt.py File 1864 bytes December 23 2018 21:37:14.
csv.py File 16180 bytes December 23 2018 21:37:14.
datetime.py File 82034 bytes December 23 2018 21:37:14.
decimal.py File 320 bytes December 23 2018 21:37:14.
difflib.py File 84377 bytes December 23 2018 21:37:14.
dis.py File 18132 bytes December 23 2018 21:37:14.
doctest.py File 104391 bytes December 23 2018 21:37:14.
dummy_threading.py File 2815 bytes December 23 2018 21:37:14.
enum.py File 33606 bytes December 23 2018 21:37:14.
filecmp.py File 9830 bytes December 23 2018 21:37:14.
fileinput.py File 14471 bytes December 23 2018 21:37:14.
fnmatch.py File 3166 bytes December 23 2018 21:37:14.
formatter.py File 15143 bytes December 23 2018 21:37:14.
fractions.py File 23639 bytes December 23 2018 21:37:14.
ftplib.py File 35617 bytes July 01 2025 22:09:53.
functools.py File 31346 bytes December 23 2018 21:37:14.
genericpath.py File 5028 bytes July 01 2025 22:09:53.
getopt.py File 7489 bytes December 23 2018 21:37:14.
getpass.py File 5994 bytes December 23 2018 21:37:14.
gettext.py File 21530 bytes December 23 2018 21:37:14.
glob.py File 5638 bytes December 23 2018 21:37:14.
gzip.py File 20334 bytes December 23 2018 21:37:14.
hashlib.py File 8799 bytes July 01 2025 22:09:53.
heapq.py File 22929 bytes December 23 2018 21:37:14.
hmac.py File 6381 bytes July 01 2025 22:09:53.
imaplib.py File 53295 bytes December 23 2018 21:37:14.
imghdr.py File 3795 bytes December 23 2018 21:37:14.
imp.py File 10669 bytes December 23 2018 21:37:14.
inspect.py File 116958 bytes December 23 2018 21:37:14.
io.py File 3517 bytes December 23 2018 21:37:14.
ipaddress.py File 77818 bytes July 01 2025 22:09:53.
keyword.py File 2219 bytes December 23 2018 21:37:14.
linecache.py File 5312 bytes December 23 2018 21:37:14.
locale.py File 77300 bytes December 23 2018 21:37:14.
lzma.py File 12983 bytes December 23 2018 21:37:14.
macpath.py File 5971 bytes December 23 2018 21:37:14.
macurl2path.py File 2732 bytes December 23 2018 21:37:14.
mailbox.py File 78624 bytes December 23 2018 21:37:14.
mailcap.py File 9067 bytes July 01 2025 22:09:53.
mimetypes.py File 21042 bytes December 23 2018 21:37:14.
modulefinder.py File 23027 bytes December 23 2018 21:37:14.
netrc.py File 5684 bytes December 23 2018 21:37:14.
nntplib.py File 43078 bytes December 23 2018 21:37:14.
ntpath.py File 23094 bytes December 23 2018 21:37:14.
nturl2path.py File 2444 bytes December 23 2018 21:37:14.
numbers.py File 10243 bytes December 23 2018 21:37:14.
opcode.py File 5822 bytes December 23 2018 21:37:14.
operator.py File 10863 bytes December 23 2018 21:37:14.
optparse.py File 60371 bytes December 23 2018 21:37:14.
os.py File 37526 bytes December 23 2018 21:37:14.
pathlib.py File 46238 bytes July 01 2025 22:09:53.
pdb.py File 61320 bytes December 23 2018 21:37:14.
pickle.py File 55691 bytes December 23 2018 21:37:14.
pickletools.py File 91775 bytes December 23 2018 21:37:14.
pipes.py File 8916 bytes December 23 2018 21:37:14.
pkgutil.py File 21315 bytes December 23 2018 21:37:14.
platform.py File 47214 bytes July 01 2025 22:09:53.
plistlib.py File 32291 bytes July 01 2025 22:09:53.
poplib.py File 14964 bytes December 23 2018 21:37:14.
posixpath.py File 16324 bytes July 01 2025 22:09:53.
pprint.py File 20860 bytes December 23 2018 21:37:14.
profile.py File 22029 bytes December 23 2018 21:37:14.
pstats.py File 26564 bytes December 23 2018 21:37:14.
pty.py File 4763 bytes December 23 2018 21:37:14.
py_compile.py File 7181 bytes December 23 2018 21:37:14.
pyclbr.py File 13558 bytes December 23 2018 21:37:14.
pydoc.py File 103501 bytes July 01 2025 22:14:42.
queue.py File 8780 bytes December 23 2018 21:37:14.
quopri.py File 7262 bytes December 23 2018 21:37:14.
random.py File 27442 bytes December 23 2018 21:37:14.
re.py File 15552 bytes December 23 2018 21:37:14.
reprlib.py File 5336 bytes December 23 2018 21:37:14.
rlcompleter.py File 7097 bytes December 23 2018 21:37:14.
runpy.py File 11959 bytes December 23 2018 21:37:14.
sched.py File 6511 bytes December 23 2018 21:37:14.
secrets.py File 2038 bytes December 23 2018 21:37:14.
selectors.py File 19438 bytes December 23 2018 21:37:14.
shelve.py File 8515 bytes December 23 2018 21:37:14.
shlex.py File 12956 bytes December 23 2018 21:37:14.
shutil.py File 40829 bytes July 01 2025 22:09:53.
signal.py File 2123 bytes December 23 2018 21:37:14.
site.py File 21268 bytes July 01 2025 22:09:53.
smtpd.py File 34719 bytes December 23 2018 21:37:14.
smtplib.py File 44218 bytes December 23 2018 21:37:14.
sndhdr.py File 7088 bytes December 23 2018 21:37:14.
socket.py File 27443 bytes December 23 2018 21:37:14.
socketserver.py File 27010 bytes December 23 2018 21:37:14.
sre_compile.py File 19338 bytes December 23 2018 21:37:14.
sre_constants.py File 6821 bytes December 23 2018 21:37:14.
sre_parse.py File 36536 bytes December 23 2018 21:37:14.
ssl.py File 44509 bytes July 01 2025 22:09:53.
stat.py File 5038 bytes December 23 2018 21:37:14.
statistics.py File 20673 bytes December 23 2018 21:37:14.
string.py File 11795 bytes December 23 2018 21:37:14.
stringprep.py File 12917 bytes December 23 2018 21:37:14.
struct.py File 257 bytes December 23 2018 21:37:14.
subprocess.py File 62339 bytes December 23 2018 21:37:14.
sunau.py File 18095 bytes December 23 2018 21:37:14.
symbol.py File 2119 bytes December 23 2018 21:37:14.
symtable.py File 7277 bytes December 23 2018 21:37:14.
sysconfig.py File 24876 bytes July 01 2025 22:14:40.
tabnanny.py File 11411 bytes December 23 2018 21:37:14.
tarfile.py File 111510 bytes July 01 2025 22:09:53.
telnetlib.py File 23136 bytes December 23 2018 21:37:14.
tempfile.py File 28066 bytes July 01 2025 22:09:53.
textwrap.py File 19558 bytes December 23 2018 21:37:14.
this.py File 1003 bytes December 23 2018 21:37:14.
threading.py File 50136 bytes July 01 2025 22:09:53.
timeit.py File 13342 bytes December 23 2018 21:37:14.
token.py File 3075 bytes December 23 2018 21:37:14.
tokenize.py File 29496 bytes December 23 2018 21:37:14.
trace.py File 28733 bytes December 23 2018 21:37:14.
traceback.py File 23458 bytes December 23 2018 21:37:14.
tracemalloc.py File 16658 bytes December 23 2018 21:37:14.
tty.py File 879 bytes December 23 2018 21:37:14.
types.py File 8870 bytes December 23 2018 21:37:14.
typing.py File 80274 bytes December 23 2018 21:37:14.
uu.py File 6763 bytes December 23 2018 21:37:14.
uuid.py File 24020 bytes July 01 2025 22:09:53.
warnings.py File 18488 bytes December 23 2018 21:37:14.
wave.py File 17709 bytes December 23 2018 21:37:14.
weakref.py File 20466 bytes December 23 2018 21:37:14.
webbrowser.py File 21767 bytes December 23 2018 21:37:14.
xdrlib.py File 5913 bytes December 23 2018 21:37:14.
zipapp.py File 7157 bytes December 23 2018 21:37:14.
zipfile.py File 79924 bytes July 01 2025 22:09:53.

Reading File: //lib64//python3.6/fractions.py

# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.

"""Fraction, infinite-precision, real numbers."""

from decimal import Decimal
import math
import numbers
import operator
import re
import sys

__all__ = ['Fraction', 'gcd']



def gcd(a, b):
    """Calculate the Greatest Common Divisor of a and b.

    Unless b==0, the result will have the same sign as b (so that when
    b is divided by it, the result comes out positive).
    """
    import warnings
    warnings.warn('fractions.gcd() is deprecated. Use math.gcd() instead.',
                  DeprecationWarning, 2)
    if type(a) is int is type(b):
        if (b or a) < 0:
            return -math.gcd(a, b)
        return math.gcd(a, b)
    return _gcd(a, b)

def _gcd(a, b):
    # Supports non-integers for backward compatibility.
    while b:
        a, b = b, a%b
    return a

# Constants related to the hash implementation;  hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
# Value to be used for rationals that reduce to infinity modulo
# _PyHASH_MODULUS.
_PyHASH_INF = sys.hash_info.inf

_RATIONAL_FORMAT = re.compile(r"""
    \A\s*                      # optional whitespace at the start, then
    (?P<sign>[-+]?)            # an optional sign, then
    (?=\d|\.\d)                # lookahead for digit or .digit
    (?P<num>\d*)               # numerator (possibly empty)
    (?:                        # followed by
       (?:/(?P<denom>\d+))?    # an optional denominator
    |                          # or
       (?:\.(?P<decimal>\d*))? # an optional fractional part
       (?:E(?P<exp>[-+]?\d+))? # and optional exponent
    )
    \s*\Z                      # and optional whitespace to finish
""", re.VERBOSE | re.IGNORECASE)


class Fraction(numbers.Rational):
    """This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    """

    __slots__ = ('_numerator', '_denominator')

    # We're immutable, so use __new__ not __init__
    def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
        """Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        """
        self = super(Fraction, cls).__new__(cls)

        if denominator is None:
            if type(numerator) is int:
                self._numerator = numerator
                self._denominator = 1
                return self

            elif isinstance(numerator, numbers.Rational):
                self._numerator = numerator.numerator
                self._denominator = numerator.denominator
                return self

            elif isinstance(numerator, (float, Decimal)):
                # Exact conversion
                self._numerator, self._denominator = numerator.as_integer_ratio()
                return self

            elif isinstance(numerator, str):
                # Handle construction from strings.
                m = _RATIONAL_FORMAT.match(numerator)
                if m is None:
                    raise ValueError('Invalid literal for Fraction: %r' %
                                     numerator)
                numerator = int(m.group('num') or '0')
                denom = m.group('denom')
                if denom:
                    denominator = int(denom)
                else:
                    denominator = 1
                    decimal = m.group('decimal')
                    if decimal:
                        scale = 10**len(decimal)
                        numerator = numerator * scale + int(decimal)
                        denominator *= scale
                    exp = m.group('exp')
                    if exp:
                        exp = int(exp)
                        if exp >= 0:
                            numerator *= 10**exp
                        else:
                            denominator *= 10**-exp
                if m.group('sign') == '-':
                    numerator = -numerator

            else:
                raise TypeError("argument should be a string "
                                "or a Rational instance")

        elif type(numerator) is int is type(denominator):
            pass # *very* normal case

        elif (isinstance(numerator, numbers.Rational) and
            isinstance(denominator, numbers.Rational)):
            numerator, denominator = (
                numerator.numerator * denominator.denominator,
                denominator.numerator * numerator.denominator
                )
        else:
            raise TypeError("both arguments should be "
                            "Rational instances")

        if denominator == 0:
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
        if _normalize:
            if type(numerator) is int is type(denominator):
                # *very* normal case
                g = math.gcd(numerator, denominator)
                if denominator < 0:
                    g = -g
            else:
                g = _gcd(numerator, denominator)
            numerator //= g
            denominator //= g
        self._numerator = numerator
        self._denominator = denominator
        return self

    @classmethod
    def from_float(cls, f):
        """Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        """
        if isinstance(f, numbers.Integral):
            return cls(f)
        elif not isinstance(f, float):
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
                            (cls.__name__, f, type(f).__name__))
        return cls(*f.as_integer_ratio())

    @classmethod
    def from_decimal(cls, dec):
        """Converts a finite Decimal instance to a rational number, exactly."""
        from decimal import Decimal
        if isinstance(dec, numbers.Integral):
            dec = Decimal(int(dec))
        elif not isinstance(dec, Decimal):
            raise TypeError(
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
                (cls.__name__, dec, type(dec).__name__))
        return cls(*dec.as_integer_ratio())

    def limit_denominator(self, max_denominator=1000000):
        """Closest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        """
        # Algorithm notes: For any real number x, define a *best upper
        # approximation* to x to be a rational number p/q such that:
        #
        #   (1) p/q >= x, and
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
        #
        # Define *best lower approximation* similarly.  Then it can be
        # proved that a rational number is a best upper or lower
        # approximation to x if, and only if, it is a convergent or
        # semiconvergent of the (unique shortest) continued fraction
        # associated to x.
        #
        # To find a best rational approximation with denominator <= M,
        # we find the best upper and lower approximations with
        # denominator <= M and take whichever of these is closer to x.
        # In the event of a tie, the bound with smaller denominator is
        # chosen.  If both denominators are equal (which can happen
        # only when max_denominator == 1 and self is midway between
        # two integers) the lower bound---i.e., the floor of self, is
        # taken.

        if max_denominator < 1:
            raise ValueError("max_denominator should be at least 1")
        if self._denominator <= max_denominator:
            return Fraction(self)

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = self._numerator, self._denominator
        while True:
            a = n//d
            q2 = q0+a*q1
            if q2 > max_denominator:
                break
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
            n, d = d, n-a*d

        k = (max_denominator-q0)//q1
        bound1 = Fraction(p0+k*p1, q0+k*q1)
        bound2 = Fraction(p1, q1)
        if abs(bound2 - self) <= abs(bound1-self):
            return bound2
        else:
            return bound1

    @property
    def numerator(a):
        return a._numerator

    @property
    def denominator(a):
        return a._denominator

    def __repr__(self):
        """repr(self)"""
        return '%s(%s, %s)' % (self.__class__.__name__,
                               self._numerator, self._denominator)

    def __str__(self):
        """str(self)"""
        if self._denominator == 1:
            return str(self._numerator)
        else:
            return '%s/%s' % (self._numerator, self._denominator)

    def _operator_fallbacks(monomorphic_operator, fallback_operator):
        """Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        """
        def forward(a, b):
            if isinstance(b, (int, Fraction)):
                return monomorphic_operator(a, b)
            elif isinstance(b, float):
                return fallback_operator(float(a), b)
            elif isinstance(b, complex):
                return fallback_operator(complex(a), b)
            else:
                return NotImplemented
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
        forward.__doc__ = monomorphic_operator.__doc__

        def reverse(b, a):
            if isinstance(a, numbers.Rational):
                # Includes ints.
                return monomorphic_operator(a, b)
            elif isinstance(a, numbers.Real):
                return fallback_operator(float(a), float(b))
            elif isinstance(a, numbers.Complex):
                return fallback_operator(complex(a), complex(b))
            else:
                return NotImplemented
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
        reverse.__doc__ = monomorphic_operator.__doc__

        return forward, reverse

    def _add(a, b):
        """a + b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db + b.numerator * da,
                        da * db)

    __add__, __radd__ = _operator_fallbacks(_add, operator.add)

    def _sub(a, b):
        """a - b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db - b.numerator * da,
                        da * db)

    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)

    def _mul(a, b):
        """a * b"""
        return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)

    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)

    def _div(a, b):
        """a / b"""
        return Fraction(a.numerator * b.denominator,
                        a.denominator * b.numerator)

    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)

    def __floordiv__(a, b):
        """a // b"""
        return math.floor(a / b)

    def __rfloordiv__(b, a):
        """a // b"""
        return math.floor(a / b)

    def __mod__(a, b):
        """a % b"""
        div = a // b
        return a - b * div

    def __rmod__(b, a):
        """a % b"""
        div = a // b
        return a - b * div

    def __pow__(a, b):
        """a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        """
        if isinstance(b, numbers.Rational):
            if b.denominator == 1:
                power = b.numerator
                if power >= 0:
                    return Fraction(a._numerator ** power,
                                    a._denominator ** power,
                                    _normalize=False)
                elif a._numerator >= 0:
                    return Fraction(a._denominator ** -power,
                                    a._numerator ** -power,
                                    _normalize=False)
                else:
                    return Fraction((-a._denominator) ** -power,
                                    (-a._numerator) ** -power,
                                    _normalize=False)
            else:
                # A fractional power will generally produce an
                # irrational number.
                return float(a) ** float(b)
        else:
            return float(a) ** b

    def __rpow__(b, a):
        """a ** b"""
        if b._denominator == 1 and b._numerator >= 0:
            # If a is an int, keep it that way if possible.
            return a ** b._numerator

        if isinstance(a, numbers.Rational):
            return Fraction(a.numerator, a.denominator) ** b

        if b._denominator == 1:
            return a ** b._numerator

        return a ** float(b)

    def __pos__(a):
        """+a: Coerces a subclass instance to Fraction"""
        return Fraction(a._numerator, a._denominator, _normalize=False)

    def __neg__(a):
        """-a"""
        return Fraction(-a._numerator, a._denominator, _normalize=False)

    def __abs__(a):
        """abs(a)"""
        return Fraction(abs(a._numerator), a._denominator, _normalize=False)

    def __trunc__(a):
        """trunc(a)"""
        if a._numerator < 0:
            return -(-a._numerator // a._denominator)
        else:
            return a._numerator // a._denominator

    def __floor__(a):
        """Will be math.floor(a) in 3.0."""
        return a.numerator // a.denominator

    def __ceil__(a):
        """Will be math.ceil(a) in 3.0."""
        # The negations cleverly convince floordiv to return the ceiling.
        return -(-a.numerator // a.denominator)

    def __round__(self, ndigits=None):
        """Will be round(self, ndigits) in 3.0.

        Rounds half toward even.
        """
        if ndigits is None:
            floor, remainder = divmod(self.numerator, self.denominator)
            if remainder * 2 < self.denominator:
                return floor
            elif remainder * 2 > self.denominator:
                return floor + 1
            # Deal with the half case:
            elif floor % 2 == 0:
                return floor
            else:
                return floor + 1
        shift = 10**abs(ndigits)
        # See _operator_fallbacks.forward to check that the results of
        # these operations will always be Fraction and therefore have
        # round().
        if ndigits > 0:
            return Fraction(round(self * shift), shift)
        else:
            return Fraction(round(self / shift) * shift)

    def __hash__(self):
        """hash(self)"""

        # XXX since this method is expensive, consider caching the result

        # In order to make sure that the hash of a Fraction agrees
        # with the hash of a numerically equal integer, float or
        # Decimal instance, we follow the rules for numeric hashes
        # outlined in the documentation.  (See library docs, 'Built-in
        # Types').

        # dinv is the inverse of self._denominator modulo the prime
        # _PyHASH_MODULUS, or 0 if self._denominator is divisible by
        # _PyHASH_MODULUS.
        dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
        if not dinv:
            hash_ = _PyHASH_INF
        else:
            hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS
        result = hash_ if self >= 0 else -hash_
        return -2 if result == -1 else result

    def __eq__(a, b):
        """a == b"""
        if type(b) is int:
            return a._numerator == b and a._denominator == 1
        if isinstance(b, numbers.Rational):
            return (a._numerator == b.numerator and
                    a._denominator == b.denominator)
        if isinstance(b, numbers.Complex) and b.imag == 0:
            b = b.real
        if isinstance(b, float):
            if math.isnan(b) or math.isinf(b):
                # comparisons with an infinity or nan should behave in
                # the same way for any finite a, so treat a as zero.
                return 0.0 == b
            else:
                return a == a.from_float(b)
        else:
            # Since a doesn't know how to compare with b, let's give b
            # a chance to compare itself with a.
            return NotImplemented

    def _richcmp(self, other, op):
        """Helper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        """
        # convert other to a Rational instance where reasonable.
        if isinstance(other, numbers.Rational):
            return op(self._numerator * other.denominator,
                      self._denominator * other.numerator)
        if isinstance(other, float):
            if math.isnan(other) or math.isinf(other):
                return op(0.0, other)
            else:
                return op(self, self.from_float(other))
        else:
            return NotImplemented

    def __lt__(a, b):
        """a < b"""
        return a._richcmp(b, operator.lt)

    def __gt__(a, b):
        """a > b"""
        return a._richcmp(b, operator.gt)

    def __le__(a, b):
        """a <= b"""
        return a._richcmp(b, operator.le)

    def __ge__(a, b):
        """a >= b"""
        return a._richcmp(b, operator.ge)

    def __bool__(a):
        """a != 0"""
        return a._numerator != 0

    # support for pickling, copy, and deepcopy

    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) == Fraction:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(self._numerator, self._denominator)

    def __deepcopy__(self, memo):
        if type(self) == Fraction:
            return self     # My components are also immutable
        return self.__class__(self._numerator, self._denominator)

SILENT KILLER Tool