SILENT KILLERPanel

Current Path: > > lib64 > > python3.6


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //lib64//python3.6

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.6m-x86_64-linux-gnu Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
test Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
__future__.py File 4841 bytes December 23 2018 21:37:14.
__phello__.foo.py File 64 bytes December 23 2018 21:37:14.
_bootlocale.py File 1301 bytes December 23 2018 21:37:14.
_collections_abc.py File 26392 bytes December 23 2018 21:37:14.
_compat_pickle.py File 8749 bytes December 23 2018 21:37:14.
_compression.py File 5340 bytes December 23 2018 21:37:14.
_dummy_thread.py File 5118 bytes December 23 2018 21:37:14.
_markupbase.py File 14598 bytes December 23 2018 21:37:14.
_osx_support.py File 19138 bytes December 23 2018 21:37:14.
_pydecimal.py File 230228 bytes December 23 2018 21:37:14.
_pyio.py File 88097 bytes December 23 2018 21:37:14.
_sitebuiltins.py File 3115 bytes December 23 2018 21:37:14.
_strptime.py File 24747 bytes December 23 2018 21:37:14.
_sysconfigdata_dm_linux_x86_64-linux-gnu.py File 30191 bytes July 01 2025 22:10:37.
_sysconfigdata_m_linux_x86_64-linux-gnu.py File 30367 bytes July 01 2025 22:14:06.
_threading_local.py File 7214 bytes December 23 2018 21:37:14.
_weakrefset.py File 5705 bytes December 23 2018 21:37:14.
abc.py File 8727 bytes December 23 2018 21:37:14.
aifc.py File 32454 bytes December 23 2018 21:37:14.
antigravity.py File 477 bytes December 23 2018 21:37:14.
argparse.py File 90372 bytes December 23 2018 21:37:14.
ast.py File 12166 bytes December 23 2018 21:37:14.
asynchat.py File 11328 bytes December 23 2018 21:37:14.
asyncore.py File 20159 bytes December 23 2018 21:37:14.
base64.py File 20388 bytes December 23 2018 21:37:14.
bdb.py File 23556 bytes December 23 2018 21:37:14.
binhex.py File 13954 bytes December 23 2018 21:37:14.
bisect.py File 2595 bytes December 23 2018 21:37:14.
bz2.py File 12478 bytes December 23 2018 21:37:14.
cProfile.py File 5380 bytes December 23 2018 21:37:14.
calendar.py File 23213 bytes December 23 2018 21:37:14.
cgi.py File 37219 bytes July 01 2025 22:09:53.
cgitb.py File 12018 bytes December 23 2018 21:37:14.
chunk.py File 5425 bytes December 23 2018 21:37:14.
cmd.py File 14860 bytes December 23 2018 21:37:14.
code.py File 10614 bytes December 23 2018 21:37:14.
codecs.py File 36276 bytes December 23 2018 21:37:14.
codeop.py File 5994 bytes December 23 2018 21:37:14.
colorsys.py File 4064 bytes December 23 2018 21:37:14.
compileall.py File 12125 bytes December 23 2018 21:37:14.
configparser.py File 53592 bytes December 23 2018 21:37:14.
contextlib.py File 13162 bytes December 23 2018 21:37:14.
copy.py File 8815 bytes December 23 2018 21:37:14.
copyreg.py File 7007 bytes December 23 2018 21:37:14.
crypt.py File 1864 bytes December 23 2018 21:37:14.
csv.py File 16180 bytes December 23 2018 21:37:14.
datetime.py File 82034 bytes December 23 2018 21:37:14.
decimal.py File 320 bytes December 23 2018 21:37:14.
difflib.py File 84377 bytes December 23 2018 21:37:14.
dis.py File 18132 bytes December 23 2018 21:37:14.
doctest.py File 104391 bytes December 23 2018 21:37:14.
dummy_threading.py File 2815 bytes December 23 2018 21:37:14.
enum.py File 33606 bytes December 23 2018 21:37:14.
filecmp.py File 9830 bytes December 23 2018 21:37:14.
fileinput.py File 14471 bytes December 23 2018 21:37:14.
fnmatch.py File 3166 bytes December 23 2018 21:37:14.
formatter.py File 15143 bytes December 23 2018 21:37:14.
fractions.py File 23639 bytes December 23 2018 21:37:14.
ftplib.py File 35617 bytes July 01 2025 22:09:53.
functools.py File 31346 bytes December 23 2018 21:37:14.
genericpath.py File 5028 bytes July 01 2025 22:09:53.
getopt.py File 7489 bytes December 23 2018 21:37:14.
getpass.py File 5994 bytes December 23 2018 21:37:14.
gettext.py File 21530 bytes December 23 2018 21:37:14.
glob.py File 5638 bytes December 23 2018 21:37:14.
gzip.py File 20334 bytes December 23 2018 21:37:14.
hashlib.py File 8799 bytes July 01 2025 22:09:53.
heapq.py File 22929 bytes December 23 2018 21:37:14.
hmac.py File 6381 bytes July 01 2025 22:09:53.
imaplib.py File 53295 bytes December 23 2018 21:37:14.
imghdr.py File 3795 bytes December 23 2018 21:37:14.
imp.py File 10669 bytes December 23 2018 21:37:14.
inspect.py File 116958 bytes December 23 2018 21:37:14.
io.py File 3517 bytes December 23 2018 21:37:14.
ipaddress.py File 77818 bytes July 01 2025 22:09:53.
keyword.py File 2219 bytes December 23 2018 21:37:14.
linecache.py File 5312 bytes December 23 2018 21:37:14.
locale.py File 77300 bytes December 23 2018 21:37:14.
lzma.py File 12983 bytes December 23 2018 21:37:14.
macpath.py File 5971 bytes December 23 2018 21:37:14.
macurl2path.py File 2732 bytes December 23 2018 21:37:14.
mailbox.py File 78624 bytes December 23 2018 21:37:14.
mailcap.py File 9067 bytes July 01 2025 22:09:53.
mimetypes.py File 21042 bytes December 23 2018 21:37:14.
modulefinder.py File 23027 bytes December 23 2018 21:37:14.
netrc.py File 5684 bytes December 23 2018 21:37:14.
nntplib.py File 43078 bytes December 23 2018 21:37:14.
ntpath.py File 23094 bytes December 23 2018 21:37:14.
nturl2path.py File 2444 bytes December 23 2018 21:37:14.
numbers.py File 10243 bytes December 23 2018 21:37:14.
opcode.py File 5822 bytes December 23 2018 21:37:14.
operator.py File 10863 bytes December 23 2018 21:37:14.
optparse.py File 60371 bytes December 23 2018 21:37:14.
os.py File 37526 bytes December 23 2018 21:37:14.
pathlib.py File 46238 bytes July 01 2025 22:09:53.
pdb.py File 61320 bytes December 23 2018 21:37:14.
pickle.py File 55691 bytes December 23 2018 21:37:14.
pickletools.py File 91775 bytes December 23 2018 21:37:14.
pipes.py File 8916 bytes December 23 2018 21:37:14.
pkgutil.py File 21315 bytes December 23 2018 21:37:14.
platform.py File 47214 bytes July 01 2025 22:09:53.
plistlib.py File 32291 bytes July 01 2025 22:09:53.
poplib.py File 14964 bytes December 23 2018 21:37:14.
posixpath.py File 16324 bytes July 01 2025 22:09:53.
pprint.py File 20860 bytes December 23 2018 21:37:14.
profile.py File 22029 bytes December 23 2018 21:37:14.
pstats.py File 26564 bytes December 23 2018 21:37:14.
pty.py File 4763 bytes December 23 2018 21:37:14.
py_compile.py File 7181 bytes December 23 2018 21:37:14.
pyclbr.py File 13558 bytes December 23 2018 21:37:14.
pydoc.py File 103501 bytes July 01 2025 22:14:42.
queue.py File 8780 bytes December 23 2018 21:37:14.
quopri.py File 7262 bytes December 23 2018 21:37:14.
random.py File 27442 bytes December 23 2018 21:37:14.
re.py File 15552 bytes December 23 2018 21:37:14.
reprlib.py File 5336 bytes December 23 2018 21:37:14.
rlcompleter.py File 7097 bytes December 23 2018 21:37:14.
runpy.py File 11959 bytes December 23 2018 21:37:14.
sched.py File 6511 bytes December 23 2018 21:37:14.
secrets.py File 2038 bytes December 23 2018 21:37:14.
selectors.py File 19438 bytes December 23 2018 21:37:14.
shelve.py File 8515 bytes December 23 2018 21:37:14.
shlex.py File 12956 bytes December 23 2018 21:37:14.
shutil.py File 40829 bytes July 01 2025 22:09:53.
signal.py File 2123 bytes December 23 2018 21:37:14.
site.py File 21268 bytes July 01 2025 22:09:53.
smtpd.py File 34719 bytes December 23 2018 21:37:14.
smtplib.py File 44218 bytes December 23 2018 21:37:14.
sndhdr.py File 7088 bytes December 23 2018 21:37:14.
socket.py File 27443 bytes December 23 2018 21:37:14.
socketserver.py File 27010 bytes December 23 2018 21:37:14.
sre_compile.py File 19338 bytes December 23 2018 21:37:14.
sre_constants.py File 6821 bytes December 23 2018 21:37:14.
sre_parse.py File 36536 bytes December 23 2018 21:37:14.
ssl.py File 44509 bytes July 01 2025 22:09:53.
stat.py File 5038 bytes December 23 2018 21:37:14.
statistics.py File 20673 bytes December 23 2018 21:37:14.
string.py File 11795 bytes December 23 2018 21:37:14.
stringprep.py File 12917 bytes December 23 2018 21:37:14.
struct.py File 257 bytes December 23 2018 21:37:14.
subprocess.py File 62339 bytes December 23 2018 21:37:14.
sunau.py File 18095 bytes December 23 2018 21:37:14.
symbol.py File 2119 bytes December 23 2018 21:37:14.
symtable.py File 7277 bytes December 23 2018 21:37:14.
sysconfig.py File 24876 bytes July 01 2025 22:14:40.
tabnanny.py File 11411 bytes December 23 2018 21:37:14.
tarfile.py File 111510 bytes July 01 2025 22:09:53.
telnetlib.py File 23136 bytes December 23 2018 21:37:14.
tempfile.py File 28066 bytes July 01 2025 22:09:53.
textwrap.py File 19558 bytes December 23 2018 21:37:14.
this.py File 1003 bytes December 23 2018 21:37:14.
threading.py File 50136 bytes July 01 2025 22:09:53.
timeit.py File 13342 bytes December 23 2018 21:37:14.
token.py File 3075 bytes December 23 2018 21:37:14.
tokenize.py File 29496 bytes December 23 2018 21:37:14.
trace.py File 28733 bytes December 23 2018 21:37:14.
traceback.py File 23458 bytes December 23 2018 21:37:14.
tracemalloc.py File 16658 bytes December 23 2018 21:37:14.
tty.py File 879 bytes December 23 2018 21:37:14.
types.py File 8870 bytes December 23 2018 21:37:14.
typing.py File 80274 bytes December 23 2018 21:37:14.
uu.py File 6763 bytes December 23 2018 21:37:14.
uuid.py File 24020 bytes July 01 2025 22:09:53.
warnings.py File 18488 bytes December 23 2018 21:37:14.
wave.py File 17709 bytes December 23 2018 21:37:14.
weakref.py File 20466 bytes December 23 2018 21:37:14.
webbrowser.py File 21767 bytes December 23 2018 21:37:14.
xdrlib.py File 5913 bytes December 23 2018 21:37:14.
zipapp.py File 7157 bytes December 23 2018 21:37:14.
zipfile.py File 79924 bytes July 01 2025 22:09:53.

Reading File: //lib64//python3.6/statistics.py

"""
Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  =============================================
Function            Description
==================  =============================================
mean                Arithmetic mean (average) of data.
harmonic_mean       Harmonic mean of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
==================  =============================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

"""

__all__ = [ 'StatisticsError',
            'pstdev', 'pvariance', 'stdev', 'variance',
            'median',  'median_low', 'median_high', 'median_grouped',
            'mean', 'mode', 'harmonic_mean',
          ]

import collections
import decimal
import math
import numbers

from fractions import Fraction
from decimal import Decimal
from itertools import groupby, chain
from bisect import bisect_left, bisect_right



# === Exceptions ===

class StatisticsError(ValueError):
    pass


# === Private utilities ===

def _sum(data, start=0):
    """_sum(data [, start]) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    If optional argument ``start`` is given, it is added to the total.
    If ``data`` is empty, ``start`` (defaulting to 0) is returned.


    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
    (<class 'float'>, Fraction(11, 1), 5)

    Some sources of round-off error will be avoided:

    # Built-in sum returns zero.
    >>> _sum([1e50, 1, -1e50] * 1000)
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    """
    count = 0
    n, d = _exact_ratio(start)
    partials = {d: n}
    partials_get = partials.get
    T = _coerce(int, type(start))
    for typ, values in groupby(data, type):
        T = _coerce(T, typ)  # or raise TypeError
        for n,d in map(_exact_ratio, values):
            count += 1
            partials[d] = partials_get(d, 0) + n
    if None in partials:
        # The sum will be a NAN or INF. We can ignore all the finite
        # partials, and just look at this special one.
        total = partials[None]
        assert not _isfinite(total)
    else:
        # Sum all the partial sums using builtin sum.
        # FIXME is this faster if we sum them in order of the denominator?
        total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
    return (T, total, count)


def _isfinite(x):
    try:
        return x.is_finite()  # Likely a Decimal.
    except AttributeError:
        return math.isfinite(x)  # Coerces to float first.


def _coerce(T, S):
    """Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    """
    # See http://bugs.python.org/issue24068.
    assert T is not bool, "initial type T is bool"
    # If the types are the same, no need to coerce anything. Put this
    # first, so that the usual case (no coercion needed) happens as soon
    # as possible.
    if T is S:  return T
    # Mixed int & other coerce to the other type.
    if S is int or S is bool:  return T
    if T is int:  return S
    # If one is a (strict) subclass of the other, coerce to the subclass.
    if issubclass(S, T):  return S
    if issubclass(T, S):  return T
    # Ints coerce to the other type.
    if issubclass(T, int):  return S
    if issubclass(S, int):  return T
    # Mixed fraction & float coerces to float (or float subclass).
    if issubclass(T, Fraction) and issubclass(S, float):
        return S
    if issubclass(T, float) and issubclass(S, Fraction):
        return T
    # Any other combination is disallowed.
    msg = "don't know how to coerce %s and %s"
    raise TypeError(msg % (T.__name__, S.__name__))


def _exact_ratio(x):
    """Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    """
    try:
        # Optimise the common case of floats. We expect that the most often
        # used numeric type will be builtin floats, so try to make this as
        # fast as possible.
        if type(x) is float or type(x) is Decimal:
            return x.as_integer_ratio()
        try:
            # x may be an int, Fraction, or Integral ABC.
            return (x.numerator, x.denominator)
        except AttributeError:
            try:
                # x may be a float or Decimal subclass.
                return x.as_integer_ratio()
            except AttributeError:
                # Just give up?
                pass
    except (OverflowError, ValueError):
        # float NAN or INF.
        assert not _isfinite(x)
        return (x, None)
    msg = "can't convert type '{}' to numerator/denominator"
    raise TypeError(msg.format(type(x).__name__))


def _convert(value, T):
    """Convert value to given numeric type T."""
    if type(value) is T:
        # This covers the cases where T is Fraction, or where value is
        # a NAN or INF (Decimal or float).
        return value
    if issubclass(T, int) and value.denominator != 1:
        T = float
    try:
        # FIXME: what do we do if this overflows?
        return T(value)
    except TypeError:
        if issubclass(T, Decimal):
            return T(value.numerator)/T(value.denominator)
        else:
            raise


def _counts(data):
    # Generate a table of sorted (value, frequency) pairs.
    table = collections.Counter(iter(data)).most_common()
    if not table:
        return table
    # Extract the values with the highest frequency.
    maxfreq = table[0][1]
    for i in range(1, len(table)):
        if table[i][1] != maxfreq:
            table = table[:i]
            break
    return table


def _find_lteq(a, x):
    'Locate the leftmost value exactly equal to x'
    i = bisect_left(a, x)
    if i != len(a) and a[i] == x:
        return i
    raise ValueError


def _find_rteq(a, l, x):
    'Locate the rightmost value exactly equal to x'
    i = bisect_right(a, x, lo=l)
    if i != (len(a)+1) and a[i-1] == x:
        return i-1
    raise ValueError


def _fail_neg(values, errmsg='negative value'):
    """Iterate over values, failing if any are less than zero."""
    for x in values:
        if x < 0:
            raise StatisticsError(errmsg)
        yield x


# === Measures of central tendency (averages) ===

def mean(data):
    """Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('mean requires at least one data point')
    T, total, count = _sum(data)
    assert count == n
    return _convert(total/n, T)


def harmonic_mean(data):
    """Return the harmonic mean of data.

    The harmonic mean, sometimes called the subcontrary mean, is the
    reciprocal of the arithmetic mean of the reciprocals of the data,
    and is often appropriate when averaging quantities which are rates
    or ratios, for example speeds. Example:

    Suppose an investor purchases an equal value of shares in each of
    three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
    What is the average P/E ratio for the investor's portfolio?

    >>> harmonic_mean([2.5, 3, 10])  # For an equal investment portfolio.
    3.6

    Using the arithmetic mean would give an average of about 5.167, which
    is too high.

    If ``data`` is empty, or any element is less than zero,
    ``harmonic_mean`` will raise ``StatisticsError``.
    """
    # For a justification for using harmonic mean for P/E ratios, see
    # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
    # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
    if iter(data) is data:
        data = list(data)
    errmsg = 'harmonic mean does not support negative values'
    n = len(data)
    if n < 1:
        raise StatisticsError('harmonic_mean requires at least one data point')
    elif n == 1:
        x = data[0]
        if isinstance(x, (numbers.Real, Decimal)):
            if x < 0:
                raise StatisticsError(errmsg)
            return x
        else:
            raise TypeError('unsupported type')
    try:
        T, total, count = _sum(1/x for x in _fail_neg(data, errmsg))
    except ZeroDivisionError:
        return 0
    assert count == n
    return _convert(n/total, T)


# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
    """Return the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        i = n//2
        return (data[i - 1] + data[i])/2


def median_low(data):
    """Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        return data[n//2 - 1]


def median_high(data):
    """Return the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    return data[n//2]


def median_grouped(data, interval=1):
    """Return the 50th percentile (median) of grouped continuous data.

    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
    3.7
    >>> median_grouped([52, 52, 53, 54])
    52.5

    This calculates the median as the 50th percentile, and should be
    used when your data is continuous and grouped. In the above example,
    the values 1, 2, 3, etc. actually represent the midpoint of classes
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
    class 3.5-4.5, and interpolation is used to estimate it.

    Optional argument ``interval`` represents the class interval, and
    defaults to 1. Changing the class interval naturally will change the
    interpolated 50th percentile value:

    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
    3.25
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
    3.5

    This function does not check whether the data points are at least
    ``interval`` apart.
    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    elif n == 1:
        return data[0]
    # Find the value at the midpoint. Remember this corresponds to the
    # centre of the class interval.
    x = data[n//2]
    for obj in (x, interval):
        if isinstance(obj, (str, bytes)):
            raise TypeError('expected number but got %r' % obj)
    try:
        L = x - interval/2  # The lower limit of the median interval.
    except TypeError:
        # Mixed type. For now we just coerce to float.
        L = float(x) - float(interval)/2

    # Uses bisection search to search for x in data with log(n) time complexity
    # Find the position of leftmost occurrence of x in data
    l1 = _find_lteq(data, x)
    # Find the position of rightmost occurrence of x in data[l1...len(data)]
    # Assuming always l1 <= l2
    l2 = _find_rteq(data, l1, x)
    cf = l1
    f = l2 - l1 + 1
    return L + interval*(n/2 - cf)/f


def mode(data):
    """Return the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

    >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
    3

    This also works with nominal (non-numeric) data:

    >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
    'red'

    If there is not exactly one most common value, ``mode`` will raise
    StatisticsError.
    """
    # Generate a table of sorted (value, frequency) pairs.
    table = _counts(data)
    if len(table) == 1:
        return table[0][0]
    elif table:
        raise StatisticsError(
                'no unique mode; found %d equally common values' % len(table)
                )
    else:
        raise StatisticsError('no mode for empty data')


# === Measures of spread ===

# See http://mathworld.wolfram.com/Variance.html
#     http://mathworld.wolfram.com/SampleVariance.html
#     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
# Under no circumstances use the so-called "computational formula for
# variance", as that is only suitable for hand calculations with a small
# amount of low-precision data. It has terrible numeric properties.
#
# See a comparison of three computational methods here:
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/

def _ss(data, c=None):
    """Return sum of square deviations of sequence data.

    If ``c`` is None, the mean is calculated in one pass, and the deviations
    from the mean are calculated in a second pass. Otherwise, deviations are
    calculated from ``c`` as given. Use the second case with care, as it can
    lead to garbage results.
    """
    if c is None:
        c = mean(data)
    T, total, count = _sum((x-c)**2 for x in data)
    # The following sum should mathematically equal zero, but due to rounding
    # error may not.
    U, total2, count2 = _sum((x-c) for x in data)
    assert T == U and count == count2
    total -=  total2**2/len(data)
    assert not total < 0, 'negative sum of square deviations: %f' % total
    return (T, total)


def variance(data, xbar=None):
    """Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 2:
        raise StatisticsError('variance requires at least two data points')
    T, ss = _ss(data, xbar)
    return _convert(ss/(n-1), T)


def pvariance(data, mu=None):
    """Return the population variance of ``data``.

    data should be an iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    This function does not check that ``mu`` is actually the mean of ``data``.
    Giving arbitrary values for ``mu`` may lead to invalid or impossible
    results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('pvariance requires at least one data point')
    T, ss = _ss(data, mu)
    return _convert(ss/n, T)


def stdev(data, xbar=None):
    """Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    """
    var = variance(data, xbar)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)


def pstdev(data, mu=None):
    """Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    """
    var = pvariance(data, mu)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)

SILENT KILLER Tool