SILENT KILLERPanel

Current Path: > > lib64 > python3.6


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //lib64/python3.6

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.6m-x86_64-linux-gnu Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
test Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
__future__.py File 4841 bytes December 23 2018 21:37:14.
__phello__.foo.py File 64 bytes December 23 2018 21:37:14.
_bootlocale.py File 1301 bytes December 23 2018 21:37:14.
_collections_abc.py File 26392 bytes December 23 2018 21:37:14.
_compat_pickle.py File 8749 bytes December 23 2018 21:37:14.
_compression.py File 5340 bytes December 23 2018 21:37:14.
_dummy_thread.py File 5118 bytes December 23 2018 21:37:14.
_markupbase.py File 14598 bytes December 23 2018 21:37:14.
_osx_support.py File 19138 bytes December 23 2018 21:37:14.
_pydecimal.py File 230228 bytes December 23 2018 21:37:14.
_pyio.py File 88097 bytes December 23 2018 21:37:14.
_sitebuiltins.py File 3115 bytes December 23 2018 21:37:14.
_strptime.py File 24747 bytes December 23 2018 21:37:14.
_sysconfigdata_dm_linux_x86_64-linux-gnu.py File 30191 bytes July 01 2025 22:10:37.
_sysconfigdata_m_linux_x86_64-linux-gnu.py File 30367 bytes July 01 2025 22:14:06.
_threading_local.py File 7214 bytes December 23 2018 21:37:14.
_weakrefset.py File 5705 bytes December 23 2018 21:37:14.
abc.py File 8727 bytes December 23 2018 21:37:14.
aifc.py File 32454 bytes December 23 2018 21:37:14.
antigravity.py File 477 bytes December 23 2018 21:37:14.
argparse.py File 90372 bytes December 23 2018 21:37:14.
ast.py File 12166 bytes December 23 2018 21:37:14.
asynchat.py File 11328 bytes December 23 2018 21:37:14.
asyncore.py File 20159 bytes December 23 2018 21:37:14.
base64.py File 20388 bytes December 23 2018 21:37:14.
bdb.py File 23556 bytes December 23 2018 21:37:14.
binhex.py File 13954 bytes December 23 2018 21:37:14.
bisect.py File 2595 bytes December 23 2018 21:37:14.
bz2.py File 12478 bytes December 23 2018 21:37:14.
cProfile.py File 5380 bytes December 23 2018 21:37:14.
calendar.py File 23213 bytes December 23 2018 21:37:14.
cgi.py File 37219 bytes July 01 2025 22:09:53.
cgitb.py File 12018 bytes December 23 2018 21:37:14.
chunk.py File 5425 bytes December 23 2018 21:37:14.
cmd.py File 14860 bytes December 23 2018 21:37:14.
code.py File 10614 bytes December 23 2018 21:37:14.
codecs.py File 36276 bytes December 23 2018 21:37:14.
codeop.py File 5994 bytes December 23 2018 21:37:14.
colorsys.py File 4064 bytes December 23 2018 21:37:14.
compileall.py File 12125 bytes December 23 2018 21:37:14.
configparser.py File 53592 bytes December 23 2018 21:37:14.
contextlib.py File 13162 bytes December 23 2018 21:37:14.
copy.py File 8815 bytes December 23 2018 21:37:14.
copyreg.py File 7007 bytes December 23 2018 21:37:14.
crypt.py File 1864 bytes December 23 2018 21:37:14.
csv.py File 16180 bytes December 23 2018 21:37:14.
datetime.py File 82034 bytes December 23 2018 21:37:14.
decimal.py File 320 bytes December 23 2018 21:37:14.
difflib.py File 84377 bytes December 23 2018 21:37:14.
dis.py File 18132 bytes December 23 2018 21:37:14.
doctest.py File 104391 bytes December 23 2018 21:37:14.
dummy_threading.py File 2815 bytes December 23 2018 21:37:14.
enum.py File 33606 bytes December 23 2018 21:37:14.
filecmp.py File 9830 bytes December 23 2018 21:37:14.
fileinput.py File 14471 bytes December 23 2018 21:37:14.
fnmatch.py File 3166 bytes December 23 2018 21:37:14.
formatter.py File 15143 bytes December 23 2018 21:37:14.
fractions.py File 23639 bytes December 23 2018 21:37:14.
ftplib.py File 35617 bytes July 01 2025 22:09:53.
functools.py File 31346 bytes December 23 2018 21:37:14.
genericpath.py File 5028 bytes July 01 2025 22:09:53.
getopt.py File 7489 bytes December 23 2018 21:37:14.
getpass.py File 5994 bytes December 23 2018 21:37:14.
gettext.py File 21530 bytes December 23 2018 21:37:14.
glob.py File 5638 bytes December 23 2018 21:37:14.
gzip.py File 20334 bytes December 23 2018 21:37:14.
hashlib.py File 8799 bytes July 01 2025 22:09:53.
heapq.py File 22929 bytes December 23 2018 21:37:14.
hmac.py File 6381 bytes July 01 2025 22:09:53.
imaplib.py File 53295 bytes December 23 2018 21:37:14.
imghdr.py File 3795 bytes December 23 2018 21:37:14.
imp.py File 10669 bytes December 23 2018 21:37:14.
inspect.py File 116958 bytes December 23 2018 21:37:14.
io.py File 3517 bytes December 23 2018 21:37:14.
ipaddress.py File 77818 bytes July 01 2025 22:09:53.
keyword.py File 2219 bytes December 23 2018 21:37:14.
linecache.py File 5312 bytes December 23 2018 21:37:14.
locale.py File 77300 bytes December 23 2018 21:37:14.
lzma.py File 12983 bytes December 23 2018 21:37:14.
macpath.py File 5971 bytes December 23 2018 21:37:14.
macurl2path.py File 2732 bytes December 23 2018 21:37:14.
mailbox.py File 78624 bytes December 23 2018 21:37:14.
mailcap.py File 9067 bytes July 01 2025 22:09:53.
mimetypes.py File 21042 bytes December 23 2018 21:37:14.
modulefinder.py File 23027 bytes December 23 2018 21:37:14.
netrc.py File 5684 bytes December 23 2018 21:37:14.
nntplib.py File 43078 bytes December 23 2018 21:37:14.
ntpath.py File 23094 bytes December 23 2018 21:37:14.
nturl2path.py File 2444 bytes December 23 2018 21:37:14.
numbers.py File 10243 bytes December 23 2018 21:37:14.
opcode.py File 5822 bytes December 23 2018 21:37:14.
operator.py File 10863 bytes December 23 2018 21:37:14.
optparse.py File 60371 bytes December 23 2018 21:37:14.
os.py File 37526 bytes December 23 2018 21:37:14.
pathlib.py File 46238 bytes July 01 2025 22:09:53.
pdb.py File 61320 bytes December 23 2018 21:37:14.
pickle.py File 55691 bytes December 23 2018 21:37:14.
pickletools.py File 91775 bytes December 23 2018 21:37:14.
pipes.py File 8916 bytes December 23 2018 21:37:14.
pkgutil.py File 21315 bytes December 23 2018 21:37:14.
platform.py File 47214 bytes July 01 2025 22:09:53.
plistlib.py File 32291 bytes July 01 2025 22:09:53.
poplib.py File 14964 bytes December 23 2018 21:37:14.
posixpath.py File 16324 bytes July 01 2025 22:09:53.
pprint.py File 20860 bytes December 23 2018 21:37:14.
profile.py File 22029 bytes December 23 2018 21:37:14.
pstats.py File 26564 bytes December 23 2018 21:37:14.
pty.py File 4763 bytes December 23 2018 21:37:14.
py_compile.py File 7181 bytes December 23 2018 21:37:14.
pyclbr.py File 13558 bytes December 23 2018 21:37:14.
pydoc.py File 103501 bytes July 01 2025 22:14:42.
queue.py File 8780 bytes December 23 2018 21:37:14.
quopri.py File 7262 bytes December 23 2018 21:37:14.
random.py File 27442 bytes December 23 2018 21:37:14.
re.py File 15552 bytes December 23 2018 21:37:14.
reprlib.py File 5336 bytes December 23 2018 21:37:14.
rlcompleter.py File 7097 bytes December 23 2018 21:37:14.
runpy.py File 11959 bytes December 23 2018 21:37:14.
sched.py File 6511 bytes December 23 2018 21:37:14.
secrets.py File 2038 bytes December 23 2018 21:37:14.
selectors.py File 19438 bytes December 23 2018 21:37:14.
shelve.py File 8515 bytes December 23 2018 21:37:14.
shlex.py File 12956 bytes December 23 2018 21:37:14.
shutil.py File 40829 bytes July 01 2025 22:09:53.
signal.py File 2123 bytes December 23 2018 21:37:14.
site.py File 21268 bytes July 01 2025 22:09:53.
smtpd.py File 34719 bytes December 23 2018 21:37:14.
smtplib.py File 44218 bytes December 23 2018 21:37:14.
sndhdr.py File 7088 bytes December 23 2018 21:37:14.
socket.py File 27443 bytes December 23 2018 21:37:14.
socketserver.py File 27010 bytes December 23 2018 21:37:14.
sre_compile.py File 19338 bytes December 23 2018 21:37:14.
sre_constants.py File 6821 bytes December 23 2018 21:37:14.
sre_parse.py File 36536 bytes December 23 2018 21:37:14.
ssl.py File 44509 bytes July 01 2025 22:09:53.
stat.py File 5038 bytes December 23 2018 21:37:14.
statistics.py File 20673 bytes December 23 2018 21:37:14.
string.py File 11795 bytes December 23 2018 21:37:14.
stringprep.py File 12917 bytes December 23 2018 21:37:14.
struct.py File 257 bytes December 23 2018 21:37:14.
subprocess.py File 62339 bytes December 23 2018 21:37:14.
sunau.py File 18095 bytes December 23 2018 21:37:14.
symbol.py File 2119 bytes December 23 2018 21:37:14.
symtable.py File 7277 bytes December 23 2018 21:37:14.
sysconfig.py File 24876 bytes July 01 2025 22:14:40.
tabnanny.py File 11411 bytes December 23 2018 21:37:14.
tarfile.py File 111510 bytes July 01 2025 22:09:53.
telnetlib.py File 23136 bytes December 23 2018 21:37:14.
tempfile.py File 28066 bytes July 01 2025 22:09:53.
textwrap.py File 19558 bytes December 23 2018 21:37:14.
this.py File 1003 bytes December 23 2018 21:37:14.
threading.py File 50136 bytes July 01 2025 22:09:53.
timeit.py File 13342 bytes December 23 2018 21:37:14.
token.py File 3075 bytes December 23 2018 21:37:14.
tokenize.py File 29496 bytes December 23 2018 21:37:14.
trace.py File 28733 bytes December 23 2018 21:37:14.
traceback.py File 23458 bytes December 23 2018 21:37:14.
tracemalloc.py File 16658 bytes December 23 2018 21:37:14.
tty.py File 879 bytes December 23 2018 21:37:14.
types.py File 8870 bytes December 23 2018 21:37:14.
typing.py File 80274 bytes December 23 2018 21:37:14.
uu.py File 6763 bytes December 23 2018 21:37:14.
uuid.py File 24020 bytes July 01 2025 22:09:53.
warnings.py File 18488 bytes December 23 2018 21:37:14.
wave.py File 17709 bytes December 23 2018 21:37:14.
weakref.py File 20466 bytes December 23 2018 21:37:14.
webbrowser.py File 21767 bytes December 23 2018 21:37:14.
xdrlib.py File 5913 bytes December 23 2018 21:37:14.
zipapp.py File 7157 bytes December 23 2018 21:37:14.
zipfile.py File 79924 bytes July 01 2025 22:09:53.

Reading File: //lib64/python3.6/csv.py

"""
csv.py - read/write/investigate CSV files
"""

import re
from _csv import Error, __version__, writer, reader, register_dialect, \
                 unregister_dialect, get_dialect, list_dialects, \
                 field_size_limit, \
                 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
                 __doc__
from _csv import Dialect as _Dialect

from collections import OrderedDict
from io import StringIO

__all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
           "Error", "Dialect", "__doc__", "excel", "excel_tab",
           "field_size_limit", "reader", "writer",
           "register_dialect", "get_dialect", "list_dialects", "Sniffer",
           "unregister_dialect", "__version__", "DictReader", "DictWriter",
           "unix_dialect"]

class Dialect:
    """Describe a CSV dialect.

    This must be subclassed (see csv.excel).  Valid attributes are:
    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
    lineterminator, quoting.

    """
    _name = ""
    _valid = False
    # placeholders
    delimiter = None
    quotechar = None
    escapechar = None
    doublequote = None
    skipinitialspace = None
    lineterminator = None
    quoting = None

    def __init__(self):
        if self.__class__ != Dialect:
            self._valid = True
        self._validate()

    def _validate(self):
        try:
            _Dialect(self)
        except TypeError as e:
            # We do this for compatibility with py2.3
            raise Error(str(e))

class excel(Dialect):
    """Describe the usual properties of Excel-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\r\n'
    quoting = QUOTE_MINIMAL
register_dialect("excel", excel)

class excel_tab(excel):
    """Describe the usual properties of Excel-generated TAB-delimited files."""
    delimiter = '\t'
register_dialect("excel-tab", excel_tab)

class unix_dialect(Dialect):
    """Describe the usual properties of Unix-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\n'
    quoting = QUOTE_ALL
register_dialect("unix", unix_dialect)


class DictReader:
    def __init__(self, f, fieldnames=None, restkey=None, restval=None,
                 dialect="excel", *args, **kwds):
        self._fieldnames = fieldnames   # list of keys for the dict
        self.restkey = restkey          # key to catch long rows
        self.restval = restval          # default value for short rows
        self.reader = reader(f, dialect, *args, **kwds)
        self.dialect = dialect
        self.line_num = 0

    def __iter__(self):
        return self

    @property
    def fieldnames(self):
        if self._fieldnames is None:
            try:
                self._fieldnames = next(self.reader)
            except StopIteration:
                pass
        self.line_num = self.reader.line_num
        return self._fieldnames

    @fieldnames.setter
    def fieldnames(self, value):
        self._fieldnames = value

    def __next__(self):
        if self.line_num == 0:
            # Used only for its side effect.
            self.fieldnames
        row = next(self.reader)
        self.line_num = self.reader.line_num

        # unlike the basic reader, we prefer not to return blanks,
        # because we will typically wind up with a dict full of None
        # values
        while row == []:
            row = next(self.reader)
        d = OrderedDict(zip(self.fieldnames, row))
        lf = len(self.fieldnames)
        lr = len(row)
        if lf < lr:
            d[self.restkey] = row[lf:]
        elif lf > lr:
            for key in self.fieldnames[lr:]:
                d[key] = self.restval
        return d


class DictWriter:
    def __init__(self, f, fieldnames, restval="", extrasaction="raise",
                 dialect="excel", *args, **kwds):
        self.fieldnames = fieldnames    # list of keys for the dict
        self.restval = restval          # for writing short dicts
        if extrasaction.lower() not in ("raise", "ignore"):
            raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
                             % extrasaction)
        self.extrasaction = extrasaction
        self.writer = writer(f, dialect, *args, **kwds)

    def writeheader(self):
        header = dict(zip(self.fieldnames, self.fieldnames))
        self.writerow(header)

    def _dict_to_list(self, rowdict):
        if self.extrasaction == "raise":
            wrong_fields = rowdict.keys() - self.fieldnames
            if wrong_fields:
                raise ValueError("dict contains fields not in fieldnames: "
                                 + ", ".join([repr(x) for x in wrong_fields]))
        return (rowdict.get(key, self.restval) for key in self.fieldnames)

    def writerow(self, rowdict):
        return self.writer.writerow(self._dict_to_list(rowdict))

    def writerows(self, rowdicts):
        return self.writer.writerows(map(self._dict_to_list, rowdicts))

# Guard Sniffer's type checking against builds that exclude complex()
try:
    complex
except NameError:
    complex = float

class Sniffer:
    '''
    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
    Returns a Dialect object.
    '''
    def __init__(self):
        # in case there is more than one possible delimiter
        self.preferred = [',', '\t', ';', ' ', ':']


    def sniff(self, sample, delimiters=None):
        """
        Returns a dialect (or None) corresponding to the sample
        """

        quotechar, doublequote, delimiter, skipinitialspace = \
                   self._guess_quote_and_delimiter(sample, delimiters)
        if not delimiter:
            delimiter, skipinitialspace = self._guess_delimiter(sample,
                                                                delimiters)

        if not delimiter:
            raise Error("Could not determine delimiter")

        class dialect(Dialect):
            _name = "sniffed"
            lineterminator = '\r\n'
            quoting = QUOTE_MINIMAL
            # escapechar = ''

        dialect.doublequote = doublequote
        dialect.delimiter = delimiter
        # _csv.reader won't accept a quotechar of ''
        dialect.quotechar = quotechar or '"'
        dialect.skipinitialspace = skipinitialspace

        return dialect


    def _guess_quote_and_delimiter(self, data, delimiters):
        """
        Looks for text enclosed between two identical quotes
        (the probable quotechar) which are preceded and followed
        by the same character (the probable delimiter).
        For example:
                         ,'some text',
        The quote with the most wins, same with the delimiter.
        If there is no quotechar the delimiter can't be determined
        this way.
        """

        matches = []
        for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
                      r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',   # ,".*?"
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
            matches = regexp.findall(data)
            if matches:
                break

        if not matches:
            # (quotechar, doublequote, delimiter, skipinitialspace)
            return ('', False, None, 0)
        quotes = {}
        delims = {}
        spaces = 0
        groupindex = regexp.groupindex
        for m in matches:
            n = groupindex['quote'] - 1
            key = m[n]
            if key:
                quotes[key] = quotes.get(key, 0) + 1
            try:
                n = groupindex['delim'] - 1
                key = m[n]
            except KeyError:
                continue
            if key and (delimiters is None or key in delimiters):
                delims[key] = delims.get(key, 0) + 1
            try:
                n = groupindex['space'] - 1
            except KeyError:
                continue
            if m[n]:
                spaces += 1

        quotechar = max(quotes, key=quotes.get)

        if delims:
            delim = max(delims, key=delims.get)
            skipinitialspace = delims[delim] == spaces
            if delim == '\n': # most likely a file with a single column
                delim = ''
        else:
            # there is *no* delimiter, it's a single column of quoted data
            delim = ''
            skipinitialspace = 0

        # if we see an extra quote between delimiters, we've got a
        # double quoted format
        dq_regexp = re.compile(
                               r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
                               {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)



        if dq_regexp.search(data):
            doublequote = True
        else:
            doublequote = False

        return (quotechar, doublequote, delim, skipinitialspace)


    def _guess_delimiter(self, data, delimiters):
        """
        The delimiter /should/ occur the same number of times on
        each row. However, due to malformed data, it may not. We don't want
        an all or nothing approach, so we allow for small variations in this
        number.
          1) build a table of the frequency of each character on every line.
          2) build a table of frequencies of this frequency (meta-frequency?),
             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
             7 times in 2 rows'
          3) use the mode of the meta-frequency to determine the /expected/
             frequency for that character
          4) find out how often the character actually meets that goal
          5) the character that best meets its goal is the delimiter
        For performance reasons, the data is evaluated in chunks, so it can
        try and evaluate the smallest portion of the data possible, evaluating
        additional chunks as necessary.
        """

        data = list(filter(None, data.split('\n')))

        ascii = [chr(c) for c in range(127)] # 7-bit ASCII

        # build frequency tables
        chunkLength = min(10, len(data))
        iteration = 0
        charFrequency = {}
        modes = {}
        delims = {}
        start, end = 0, min(chunkLength, len(data))
        while start < len(data):
            iteration += 1
            for line in data[start:end]:
                for char in ascii:
                    metaFrequency = charFrequency.get(char, {})
                    # must count even if frequency is 0
                    freq = line.count(char)
                    # value is the mode
                    metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
                    charFrequency[char] = metaFrequency

            for char in charFrequency.keys():
                items = list(charFrequency[char].items())
                if len(items) == 1 and items[0][0] == 0:
                    continue
                # get the mode of the frequencies
                if len(items) > 1:
                    modes[char] = max(items, key=lambda x: x[1])
                    # adjust the mode - subtract the sum of all
                    # other frequencies
                    items.remove(modes[char])
                    modes[char] = (modes[char][0], modes[char][1]
                                   - sum(item[1] for item in items))
                else:
                    modes[char] = items[0]

            # build a list of possible delimiters
            modeList = modes.items()
            total = float(chunkLength * iteration)
            # (rows of consistent data) / (number of rows) = 100%
            consistency = 1.0
            # minimum consistency threshold
            threshold = 0.9
            while len(delims) == 0 and consistency >= threshold:
                for k, v in modeList:
                    if v[0] > 0 and v[1] > 0:
                        if ((v[1]/total) >= consistency and
                            (delimiters is None or k in delimiters)):
                            delims[k] = v
                consistency -= 0.01

            if len(delims) == 1:
                delim = list(delims.keys())[0]
                skipinitialspace = (data[0].count(delim) ==
                                    data[0].count("%c " % delim))
                return (delim, skipinitialspace)

            # analyze another chunkLength lines
            start = end
            end += chunkLength

        if not delims:
            return ('', 0)

        # if there's more than one, fall back to a 'preferred' list
        if len(delims) > 1:
            for d in self.preferred:
                if d in delims.keys():
                    skipinitialspace = (data[0].count(d) ==
                                        data[0].count("%c " % d))
                    return (d, skipinitialspace)

        # nothing else indicates a preference, pick the character that
        # dominates(?)
        items = [(v,k) for (k,v) in delims.items()]
        items.sort()
        delim = items[-1][1]

        skipinitialspace = (data[0].count(delim) ==
                            data[0].count("%c " % delim))
        return (delim, skipinitialspace)


    def has_header(self, sample):
        # Creates a dictionary of types of data in each column. If any
        # column is of a single type (say, integers), *except* for the first
        # row, then the first row is presumed to be labels. If the type
        # can't be determined, it is assumed to be a string in which case
        # the length of the string is the determining factor: if all of the
        # rows except for the first are the same length, it's a header.
        # Finally, a 'vote' is taken at the end for each column, adding or
        # subtracting from the likelihood of the first row being a header.

        rdr = reader(StringIO(sample), self.sniff(sample))

        header = next(rdr) # assume first row is header

        columns = len(header)
        columnTypes = {}
        for i in range(columns): columnTypes[i] = None

        checked = 0
        for row in rdr:
            # arbitrary number of rows to check, to keep it sane
            if checked > 20:
                break
            checked += 1

            if len(row) != columns:
                continue # skip rows that have irregular number of columns

            for col in list(columnTypes.keys()):

                for thisType in [int, float, complex]:
                    try:
                        thisType(row[col])
                        break
                    except (ValueError, OverflowError):
                        pass
                else:
                    # fallback to length of string
                    thisType = len(row[col])

                if thisType != columnTypes[col]:
                    if columnTypes[col] is None: # add new column type
                        columnTypes[col] = thisType
                    else:
                        # type is inconsistent, remove column from
                        # consideration
                        del columnTypes[col]

        # finally, compare results against first row and "vote"
        # on whether it's a header
        hasHeader = 0
        for col, colType in columnTypes.items():
            if type(colType) == type(0): # it's a length
                if len(header[col]) != colType:
                    hasHeader += 1
                else:
                    hasHeader -= 1
            else: # attempt typecast
                try:
                    colType(header[col])
                except (ValueError, TypeError):
                    hasHeader += 1
                else:
                    hasHeader -= 1

        return hasHeader > 0

SILENT KILLER Tool