Current Path: > > lib64 > python3.6
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
__pycache__ | Directory | - | - | |
asyncio | Directory | - | - | |
collections | Directory | - | - | |
concurrent | Directory | - | - | |
config-3.6m-x86_64-linux-gnu | Directory | - | - | |
ctypes | Directory | - | - | |
curses | Directory | - | - | |
dbm | Directory | - | - | |
distutils | Directory | - | - | |
Directory | - | - | ||
encodings | Directory | - | - | |
ensurepip | Directory | - | - | |
html | Directory | - | - | |
http | Directory | - | - | |
importlib | Directory | - | - | |
json | Directory | - | - | |
lib-dynload | Directory | - | - | |
lib2to3 | Directory | - | - | |
logging | Directory | - | - | |
multiprocessing | Directory | - | - | |
pydoc_data | Directory | - | - | |
site-packages | Directory | - | - | |
sqlite3 | Directory | - | - | |
test | Directory | - | - | |
unittest | Directory | - | - | |
urllib | Directory | - | - | |
venv | Directory | - | - | |
wsgiref | Directory | - | - | |
xml | Directory | - | - | |
xmlrpc | Directory | - | - | |
__future__.py | File | 4841 bytes | December 23 2018 21:37:14. | |
__phello__.foo.py | File | 64 bytes | December 23 2018 21:37:14. | |
_bootlocale.py | File | 1301 bytes | December 23 2018 21:37:14. | |
_collections_abc.py | File | 26392 bytes | December 23 2018 21:37:14. | |
_compat_pickle.py | File | 8749 bytes | December 23 2018 21:37:14. | |
_compression.py | File | 5340 bytes | December 23 2018 21:37:14. | |
_dummy_thread.py | File | 5118 bytes | December 23 2018 21:37:14. | |
_markupbase.py | File | 14598 bytes | December 23 2018 21:37:14. | |
_osx_support.py | File | 19138 bytes | December 23 2018 21:37:14. | |
_pydecimal.py | File | 230228 bytes | December 23 2018 21:37:14. | |
_pyio.py | File | 88097 bytes | December 23 2018 21:37:14. | |
_sitebuiltins.py | File | 3115 bytes | December 23 2018 21:37:14. | |
_strptime.py | File | 24747 bytes | December 23 2018 21:37:14. | |
_sysconfigdata_dm_linux_x86_64-linux-gnu.py | File | 30191 bytes | July 01 2025 22:10:37. | |
_sysconfigdata_m_linux_x86_64-linux-gnu.py | File | 30367 bytes | July 01 2025 22:14:06. | |
_threading_local.py | File | 7214 bytes | December 23 2018 21:37:14. | |
_weakrefset.py | File | 5705 bytes | December 23 2018 21:37:14. | |
abc.py | File | 8727 bytes | December 23 2018 21:37:14. | |
aifc.py | File | 32454 bytes | December 23 2018 21:37:14. | |
antigravity.py | File | 477 bytes | December 23 2018 21:37:14. | |
argparse.py | File | 90372 bytes | December 23 2018 21:37:14. | |
ast.py | File | 12166 bytes | December 23 2018 21:37:14. | |
asynchat.py | File | 11328 bytes | December 23 2018 21:37:14. | |
asyncore.py | File | 20159 bytes | December 23 2018 21:37:14. | |
base64.py | File | 20388 bytes | December 23 2018 21:37:14. | |
bdb.py | File | 23556 bytes | December 23 2018 21:37:14. | |
binhex.py | File | 13954 bytes | December 23 2018 21:37:14. | |
bisect.py | File | 2595 bytes | December 23 2018 21:37:14. | |
bz2.py | File | 12478 bytes | December 23 2018 21:37:14. | |
cProfile.py | File | 5380 bytes | December 23 2018 21:37:14. | |
calendar.py | File | 23213 bytes | December 23 2018 21:37:14. | |
cgi.py | File | 37219 bytes | July 01 2025 22:09:53. | |
cgitb.py | File | 12018 bytes | December 23 2018 21:37:14. | |
chunk.py | File | 5425 bytes | December 23 2018 21:37:14. | |
cmd.py | File | 14860 bytes | December 23 2018 21:37:14. | |
code.py | File | 10614 bytes | December 23 2018 21:37:14. | |
codecs.py | File | 36276 bytes | December 23 2018 21:37:14. | |
codeop.py | File | 5994 bytes | December 23 2018 21:37:14. | |
colorsys.py | File | 4064 bytes | December 23 2018 21:37:14. | |
compileall.py | File | 12125 bytes | December 23 2018 21:37:14. | |
configparser.py | File | 53592 bytes | December 23 2018 21:37:14. | |
contextlib.py | File | 13162 bytes | December 23 2018 21:37:14. | |
copy.py | File | 8815 bytes | December 23 2018 21:37:14. | |
copyreg.py | File | 7007 bytes | December 23 2018 21:37:14. | |
crypt.py | File | 1864 bytes | December 23 2018 21:37:14. | |
csv.py | File | 16180 bytes | December 23 2018 21:37:14. | |
datetime.py | File | 82034 bytes | December 23 2018 21:37:14. | |
decimal.py | File | 320 bytes | December 23 2018 21:37:14. | |
difflib.py | File | 84377 bytes | December 23 2018 21:37:14. | |
dis.py | File | 18132 bytes | December 23 2018 21:37:14. | |
doctest.py | File | 104391 bytes | December 23 2018 21:37:14. | |
dummy_threading.py | File | 2815 bytes | December 23 2018 21:37:14. | |
enum.py | File | 33606 bytes | December 23 2018 21:37:14. | |
filecmp.py | File | 9830 bytes | December 23 2018 21:37:14. | |
fileinput.py | File | 14471 bytes | December 23 2018 21:37:14. | |
fnmatch.py | File | 3166 bytes | December 23 2018 21:37:14. | |
formatter.py | File | 15143 bytes | December 23 2018 21:37:14. | |
fractions.py | File | 23639 bytes | December 23 2018 21:37:14. | |
ftplib.py | File | 35617 bytes | July 01 2025 22:09:53. | |
functools.py | File | 31346 bytes | December 23 2018 21:37:14. | |
genericpath.py | File | 5028 bytes | July 01 2025 22:09:53. | |
getopt.py | File | 7489 bytes | December 23 2018 21:37:14. | |
getpass.py | File | 5994 bytes | December 23 2018 21:37:14. | |
gettext.py | File | 21530 bytes | December 23 2018 21:37:14. | |
glob.py | File | 5638 bytes | December 23 2018 21:37:14. | |
gzip.py | File | 20334 bytes | December 23 2018 21:37:14. | |
hashlib.py | File | 8799 bytes | July 01 2025 22:09:53. | |
heapq.py | File | 22929 bytes | December 23 2018 21:37:14. | |
hmac.py | File | 6381 bytes | July 01 2025 22:09:53. | |
imaplib.py | File | 53295 bytes | December 23 2018 21:37:14. | |
imghdr.py | File | 3795 bytes | December 23 2018 21:37:14. | |
imp.py | File | 10669 bytes | December 23 2018 21:37:14. | |
inspect.py | File | 116958 bytes | December 23 2018 21:37:14. | |
io.py | File | 3517 bytes | December 23 2018 21:37:14. | |
ipaddress.py | File | 77818 bytes | July 01 2025 22:09:53. | |
keyword.py | File | 2219 bytes | December 23 2018 21:37:14. | |
linecache.py | File | 5312 bytes | December 23 2018 21:37:14. | |
locale.py | File | 77300 bytes | December 23 2018 21:37:14. | |
lzma.py | File | 12983 bytes | December 23 2018 21:37:14. | |
macpath.py | File | 5971 bytes | December 23 2018 21:37:14. | |
macurl2path.py | File | 2732 bytes | December 23 2018 21:37:14. | |
mailbox.py | File | 78624 bytes | December 23 2018 21:37:14. | |
mailcap.py | File | 9067 bytes | July 01 2025 22:09:53. | |
mimetypes.py | File | 21042 bytes | December 23 2018 21:37:14. | |
modulefinder.py | File | 23027 bytes | December 23 2018 21:37:14. | |
netrc.py | File | 5684 bytes | December 23 2018 21:37:14. | |
nntplib.py | File | 43078 bytes | December 23 2018 21:37:14. | |
ntpath.py | File | 23094 bytes | December 23 2018 21:37:14. | |
nturl2path.py | File | 2444 bytes | December 23 2018 21:37:14. | |
numbers.py | File | 10243 bytes | December 23 2018 21:37:14. | |
opcode.py | File | 5822 bytes | December 23 2018 21:37:14. | |
operator.py | File | 10863 bytes | December 23 2018 21:37:14. | |
optparse.py | File | 60371 bytes | December 23 2018 21:37:14. | |
os.py | File | 37526 bytes | December 23 2018 21:37:14. | |
pathlib.py | File | 46238 bytes | July 01 2025 22:09:53. | |
pdb.py | File | 61320 bytes | December 23 2018 21:37:14. | |
pickle.py | File | 55691 bytes | December 23 2018 21:37:14. | |
pickletools.py | File | 91775 bytes | December 23 2018 21:37:14. | |
pipes.py | File | 8916 bytes | December 23 2018 21:37:14. | |
pkgutil.py | File | 21315 bytes | December 23 2018 21:37:14. | |
platform.py | File | 47214 bytes | July 01 2025 22:09:53. | |
plistlib.py | File | 32291 bytes | July 01 2025 22:09:53. | |
poplib.py | File | 14964 bytes | December 23 2018 21:37:14. | |
posixpath.py | File | 16324 bytes | July 01 2025 22:09:53. | |
pprint.py | File | 20860 bytes | December 23 2018 21:37:14. | |
profile.py | File | 22029 bytes | December 23 2018 21:37:14. | |
pstats.py | File | 26564 bytes | December 23 2018 21:37:14. | |
pty.py | File | 4763 bytes | December 23 2018 21:37:14. | |
py_compile.py | File | 7181 bytes | December 23 2018 21:37:14. | |
pyclbr.py | File | 13558 bytes | December 23 2018 21:37:14. | |
pydoc.py | File | 103501 bytes | July 01 2025 22:14:42. | |
queue.py | File | 8780 bytes | December 23 2018 21:37:14. | |
quopri.py | File | 7262 bytes | December 23 2018 21:37:14. | |
random.py | File | 27442 bytes | December 23 2018 21:37:14. | |
re.py | File | 15552 bytes | December 23 2018 21:37:14. | |
reprlib.py | File | 5336 bytes | December 23 2018 21:37:14. | |
rlcompleter.py | File | 7097 bytes | December 23 2018 21:37:14. | |
runpy.py | File | 11959 bytes | December 23 2018 21:37:14. | |
sched.py | File | 6511 bytes | December 23 2018 21:37:14. | |
secrets.py | File | 2038 bytes | December 23 2018 21:37:14. | |
selectors.py | File | 19438 bytes | December 23 2018 21:37:14. | |
shelve.py | File | 8515 bytes | December 23 2018 21:37:14. | |
shlex.py | File | 12956 bytes | December 23 2018 21:37:14. | |
shutil.py | File | 40829 bytes | July 01 2025 22:09:53. | |
signal.py | File | 2123 bytes | December 23 2018 21:37:14. | |
site.py | File | 21268 bytes | July 01 2025 22:09:53. | |
smtpd.py | File | 34719 bytes | December 23 2018 21:37:14. | |
smtplib.py | File | 44218 bytes | December 23 2018 21:37:14. | |
sndhdr.py | File | 7088 bytes | December 23 2018 21:37:14. | |
socket.py | File | 27443 bytes | December 23 2018 21:37:14. | |
socketserver.py | File | 27010 bytes | December 23 2018 21:37:14. | |
sre_compile.py | File | 19338 bytes | December 23 2018 21:37:14. | |
sre_constants.py | File | 6821 bytes | December 23 2018 21:37:14. | |
sre_parse.py | File | 36536 bytes | December 23 2018 21:37:14. | |
ssl.py | File | 44509 bytes | July 01 2025 22:09:53. | |
stat.py | File | 5038 bytes | December 23 2018 21:37:14. | |
statistics.py | File | 20673 bytes | December 23 2018 21:37:14. | |
string.py | File | 11795 bytes | December 23 2018 21:37:14. | |
stringprep.py | File | 12917 bytes | December 23 2018 21:37:14. | |
struct.py | File | 257 bytes | December 23 2018 21:37:14. | |
subprocess.py | File | 62339 bytes | December 23 2018 21:37:14. | |
sunau.py | File | 18095 bytes | December 23 2018 21:37:14. | |
symbol.py | File | 2119 bytes | December 23 2018 21:37:14. | |
symtable.py | File | 7277 bytes | December 23 2018 21:37:14. | |
sysconfig.py | File | 24876 bytes | July 01 2025 22:14:40. | |
tabnanny.py | File | 11411 bytes | December 23 2018 21:37:14. | |
tarfile.py | File | 111510 bytes | July 01 2025 22:09:53. | |
telnetlib.py | File | 23136 bytes | December 23 2018 21:37:14. | |
tempfile.py | File | 28066 bytes | July 01 2025 22:09:53. | |
textwrap.py | File | 19558 bytes | December 23 2018 21:37:14. | |
this.py | File | 1003 bytes | December 23 2018 21:37:14. | |
threading.py | File | 50136 bytes | July 01 2025 22:09:53. | |
timeit.py | File | 13342 bytes | December 23 2018 21:37:14. | |
token.py | File | 3075 bytes | December 23 2018 21:37:14. | |
tokenize.py | File | 29496 bytes | December 23 2018 21:37:14. | |
trace.py | File | 28733 bytes | December 23 2018 21:37:14. | |
traceback.py | File | 23458 bytes | December 23 2018 21:37:14. | |
tracemalloc.py | File | 16658 bytes | December 23 2018 21:37:14. | |
tty.py | File | 879 bytes | December 23 2018 21:37:14. | |
types.py | File | 8870 bytes | December 23 2018 21:37:14. | |
typing.py | File | 80274 bytes | December 23 2018 21:37:14. | |
uu.py | File | 6763 bytes | December 23 2018 21:37:14. | |
uuid.py | File | 24020 bytes | July 01 2025 22:09:53. | |
warnings.py | File | 18488 bytes | December 23 2018 21:37:14. | |
wave.py | File | 17709 bytes | December 23 2018 21:37:14. | |
weakref.py | File | 20466 bytes | December 23 2018 21:37:14. | |
webbrowser.py | File | 21767 bytes | December 23 2018 21:37:14. | |
xdrlib.py | File | 5913 bytes | December 23 2018 21:37:14. | |
zipapp.py | File | 7157 bytes | December 23 2018 21:37:14. | |
zipfile.py | File | 79924 bytes | July 01 2025 22:09:53. |
""" Basic statistics module. This module provides functions for calculating statistics of data, including averages, variance, and standard deviation. Calculating averages -------------------- ================== ============================================= Function Description ================== ============================================= mean Arithmetic mean (average) of data. harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. median_grouped Median, or 50th percentile, of grouped data. mode Mode (most common value) of data. ================== ============================================= Calculate the arithmetic mean ("the average") of data: >>> mean([-1.0, 2.5, 3.25, 5.75]) 2.625 Calculate the standard median of discrete data: >>> median([2, 3, 4, 5]) 3.5 Calculate the median, or 50th percentile, of data grouped into class intervals centred on the data values provided. E.g. if your data points are rounded to the nearest whole number: >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS 2.8333333333... This should be interpreted in this way: you have two data points in the class interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in the class interval 3.5-4.5. The median of these data points is 2.8333... Calculating variability or spread --------------------------------- ================== ============================================= Function Description ================== ============================================= pvariance Population variance of data. variance Sample variance of data. pstdev Population standard deviation of data. stdev Sample standard deviation of data. ================== ============================================= Calculate the standard deviation of sample data: >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS 4.38961843444... If you have previously calculated the mean, you can pass it as the optional second argument to the four "spread" functions to avoid recalculating it: >>> data = [1, 2, 2, 4, 4, 4, 5, 6] >>> mu = mean(data) >>> pvariance(data, mu) 2.5 Exceptions ---------- A single exception is defined: StatisticsError is a subclass of ValueError. """ __all__ = [ 'StatisticsError', 'pstdev', 'pvariance', 'stdev', 'variance', 'median', 'median_low', 'median_high', 'median_grouped', 'mean', 'mode', 'harmonic_mean', ] import collections import decimal import math import numbers from fractions import Fraction from decimal import Decimal from itertools import groupby, chain from bisect import bisect_left, bisect_right # === Exceptions === class StatisticsError(ValueError): pass # === Private utilities === def _sum(data, start=0): """_sum(data [, start]) -> (type, sum, count) Return a high-precision sum of the given numeric data as a fraction, together with the type to be converted to and the count of items. If optional argument ``start`` is given, it is added to the total. If ``data`` is empty, ``start`` (defaulting to 0) is returned. Examples -------- >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75) (<class 'float'>, Fraction(11, 1), 5) Some sources of round-off error will be avoided: # Built-in sum returns zero. >>> _sum([1e50, 1, -1e50] * 1000) (<class 'float'>, Fraction(1000, 1), 3000) Fractions and Decimals are also supported: >>> from fractions import Fraction as F >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) (<class 'fractions.Fraction'>, Fraction(63, 20), 4) >>> from decimal import Decimal as D >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] >>> _sum(data) (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4) Mixed types are currently treated as an error, except that int is allowed. """ count = 0 n, d = _exact_ratio(start) partials = {d: n} partials_get = partials.get T = _coerce(int, type(start)) for typ, values in groupby(data, type): T = _coerce(T, typ) # or raise TypeError for n,d in map(_exact_ratio, values): count += 1 partials[d] = partials_get(d, 0) + n if None in partials: # The sum will be a NAN or INF. We can ignore all the finite # partials, and just look at this special one. total = partials[None] assert not _isfinite(total) else: # Sum all the partial sums using builtin sum. # FIXME is this faster if we sum them in order of the denominator? total = sum(Fraction(n, d) for d, n in sorted(partials.items())) return (T, total, count) def _isfinite(x): try: return x.is_finite() # Likely a Decimal. except AttributeError: return math.isfinite(x) # Coerces to float first. def _coerce(T, S): """Coerce types T and S to a common type, or raise TypeError. Coercion rules are currently an implementation detail. See the CoerceTest test class in test_statistics for details. """ # See http://bugs.python.org/issue24068. assert T is not bool, "initial type T is bool" # If the types are the same, no need to coerce anything. Put this # first, so that the usual case (no coercion needed) happens as soon # as possible. if T is S: return T # Mixed int & other coerce to the other type. if S is int or S is bool: return T if T is int: return S # If one is a (strict) subclass of the other, coerce to the subclass. if issubclass(S, T): return S if issubclass(T, S): return T # Ints coerce to the other type. if issubclass(T, int): return S if issubclass(S, int): return T # Mixed fraction & float coerces to float (or float subclass). if issubclass(T, Fraction) and issubclass(S, float): return S if issubclass(T, float) and issubclass(S, Fraction): return T # Any other combination is disallowed. msg = "don't know how to coerce %s and %s" raise TypeError(msg % (T.__name__, S.__name__)) def _exact_ratio(x): """Return Real number x to exact (numerator, denominator) pair. >>> _exact_ratio(0.25) (1, 4) x is expected to be an int, Fraction, Decimal or float. """ try: # Optimise the common case of floats. We expect that the most often # used numeric type will be builtin floats, so try to make this as # fast as possible. if type(x) is float or type(x) is Decimal: return x.as_integer_ratio() try: # x may be an int, Fraction, or Integral ABC. return (x.numerator, x.denominator) except AttributeError: try: # x may be a float or Decimal subclass. return x.as_integer_ratio() except AttributeError: # Just give up? pass except (OverflowError, ValueError): # float NAN or INF. assert not _isfinite(x) return (x, None) msg = "can't convert type '{}' to numerator/denominator" raise TypeError(msg.format(type(x).__name__)) def _convert(value, T): """Convert value to given numeric type T.""" if type(value) is T: # This covers the cases where T is Fraction, or where value is # a NAN or INF (Decimal or float). return value if issubclass(T, int) and value.denominator != 1: T = float try: # FIXME: what do we do if this overflows? return T(value) except TypeError: if issubclass(T, Decimal): return T(value.numerator)/T(value.denominator) else: raise def _counts(data): # Generate a table of sorted (value, frequency) pairs. table = collections.Counter(iter(data)).most_common() if not table: return table # Extract the values with the highest frequency. maxfreq = table[0][1] for i in range(1, len(table)): if table[i][1] != maxfreq: table = table[:i] break return table def _find_lteq(a, x): 'Locate the leftmost value exactly equal to x' i = bisect_left(a, x) if i != len(a) and a[i] == x: return i raise ValueError def _find_rteq(a, l, x): 'Locate the rightmost value exactly equal to x' i = bisect_right(a, x, lo=l) if i != (len(a)+1) and a[i-1] == x: return i-1 raise ValueError def _fail_neg(values, errmsg='negative value'): """Iterate over values, failing if any are less than zero.""" for x in values: if x < 0: raise StatisticsError(errmsg) yield x # === Measures of central tendency (averages) === def mean(data): """Return the sample arithmetic mean of data. >>> mean([1, 2, 3, 4, 4]) 2.8 >>> from fractions import Fraction as F >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) Fraction(13, 21) >>> from decimal import Decimal as D >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) Decimal('0.5625') If ``data`` is empty, StatisticsError will be raised. """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('mean requires at least one data point') T, total, count = _sum(data) assert count == n return _convert(total/n, T) def harmonic_mean(data): """Return the harmonic mean of data. The harmonic mean, sometimes called the subcontrary mean, is the reciprocal of the arithmetic mean of the reciprocals of the data, and is often appropriate when averaging quantities which are rates or ratios, for example speeds. Example: Suppose an investor purchases an equal value of shares in each of three companies, with P/E (price/earning) ratios of 2.5, 3 and 10. What is the average P/E ratio for the investor's portfolio? >>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio. 3.6 Using the arithmetic mean would give an average of about 5.167, which is too high. If ``data`` is empty, or any element is less than zero, ``harmonic_mean`` will raise ``StatisticsError``. """ # For a justification for using harmonic mean for P/E ratios, see # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/ # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087 if iter(data) is data: data = list(data) errmsg = 'harmonic mean does not support negative values' n = len(data) if n < 1: raise StatisticsError('harmonic_mean requires at least one data point') elif n == 1: x = data[0] if isinstance(x, (numbers.Real, Decimal)): if x < 0: raise StatisticsError(errmsg) return x else: raise TypeError('unsupported type') try: T, total, count = _sum(1/x for x in _fail_neg(data, errmsg)) except ZeroDivisionError: return 0 assert count == n return _convert(n/total, T) # FIXME: investigate ways to calculate medians without sorting? Quickselect? def median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: i = n//2 return (data[i - 1] + data[i])/2 def median_low(data): """Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. >>> median_low([1, 3, 5]) 3 >>> median_low([1, 3, 5, 7]) 3 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: return data[n//2 - 1] def median_high(data): """Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. >>> median_high([1, 3, 5]) 3 >>> median_high([1, 3, 5, 7]) 5 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") return data[n//2] def median_grouped(data, interval=1): """Return the 50th percentile (median) of grouped continuous data. >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) 3.7 >>> median_grouped([52, 52, 53, 54]) 52.5 This calculates the median as the 50th percentile, and should be used when your data is continuous and grouped. In the above example, the values 1, 2, 3, etc. actually represent the midpoint of classes 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in class 3.5-4.5, and interpolation is used to estimate it. Optional argument ``interval`` represents the class interval, and defaults to 1. Changing the class interval naturally will change the interpolated 50th percentile value: >>> median_grouped([1, 3, 3, 5, 7], interval=1) 3.25 >>> median_grouped([1, 3, 3, 5, 7], interval=2) 3.5 This function does not check whether the data points are at least ``interval`` apart. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") elif n == 1: return data[0] # Find the value at the midpoint. Remember this corresponds to the # centre of the class interval. x = data[n//2] for obj in (x, interval): if isinstance(obj, (str, bytes)): raise TypeError('expected number but got %r' % obj) try: L = x - interval/2 # The lower limit of the median interval. except TypeError: # Mixed type. For now we just coerce to float. L = float(x) - float(interval)/2 # Uses bisection search to search for x in data with log(n) time complexity # Find the position of leftmost occurrence of x in data l1 = _find_lteq(data, x) # Find the position of rightmost occurrence of x in data[l1...len(data)] # Assuming always l1 <= l2 l2 = _find_rteq(data, l1, x) cf = l1 f = l2 - l1 + 1 return L + interval*(n/2 - cf)/f def mode(data): """Return the most common data point from discrete or nominal data. ``mode`` assumes discrete data, and returns a single value. This is the standard treatment of the mode as commonly taught in schools: >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) 3 This also works with nominal (non-numeric) data: >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) 'red' If there is not exactly one most common value, ``mode`` will raise StatisticsError. """ # Generate a table of sorted (value, frequency) pairs. table = _counts(data) if len(table) == 1: return table[0][0] elif table: raise StatisticsError( 'no unique mode; found %d equally common values' % len(table) ) else: raise StatisticsError('no mode for empty data') # === Measures of spread === # See http://mathworld.wolfram.com/Variance.html # http://mathworld.wolfram.com/SampleVariance.html # http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance # # Under no circumstances use the so-called "computational formula for # variance", as that is only suitable for hand calculations with a small # amount of low-precision data. It has terrible numeric properties. # # See a comparison of three computational methods here: # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/ def _ss(data, c=None): """Return sum of square deviations of sequence data. If ``c`` is None, the mean is calculated in one pass, and the deviations from the mean are calculated in a second pass. Otherwise, deviations are calculated from ``c`` as given. Use the second case with care, as it can lead to garbage results. """ if c is None: c = mean(data) T, total, count = _sum((x-c)**2 for x in data) # The following sum should mathematically equal zero, but due to rounding # error may not. U, total2, count2 = _sum((x-c) for x in data) assert T == U and count == count2 total -= total2**2/len(data) assert not total < 0, 'negative sum of square deviations: %f' % total return (T, total) def variance(data, xbar=None): """Return the sample variance of data. data should be an iterable of Real-valued numbers, with at least two values. The optional argument xbar, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function when your data is a sample from a population. To calculate the variance from the entire population, see ``pvariance``. Examples: >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] >>> variance(data) 1.3720238095238095 If you have already calculated the mean of your data, you can pass it as the optional second argument ``xbar`` to avoid recalculating it: >>> m = mean(data) >>> variance(data, m) 1.3720238095238095 This function does not check that ``xbar`` is actually the mean of ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('31.01875') >>> from fractions import Fraction as F >>> variance([F(1, 6), F(1, 2), F(5, 3)]) Fraction(67, 108) """ if iter(data) is data: data = list(data) n = len(data) if n < 2: raise StatisticsError('variance requires at least two data points') T, ss = _ss(data, xbar) return _convert(ss/(n-1), T) def pvariance(data, mu=None): """Return the population variance of ``data``. data should be an iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. Examples: >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] >>> pvariance(data) 1.25 If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: >>> mu = mean(data) >>> pvariance(data, mu) 1.25 This function does not check that ``mu`` is actually the mean of ``data``. Giving arbitrary values for ``mu`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('24.815') >>> from fractions import Fraction as F >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) Fraction(13, 72) """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('pvariance requires at least one data point') T, ss = _ss(data, mu) return _convert(ss/n, T) def stdev(data, xbar=None): """Return the square root of the sample variance. See ``variance`` for arguments and other details. >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 1.0810874155219827 """ var = variance(data, xbar) try: return var.sqrt() except AttributeError: return math.sqrt(var) def pstdev(data, mu=None): """Return the square root of the population variance. See ``pvariance`` for arguments and other details. >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 0.986893273527251 """ var = pvariance(data, mu) try: return var.sqrt() except AttributeError: return math.sqrt(var)
SILENT KILLER Tool