SILENT KILLERPanel

Current Path: > > lib64 > python3.8 >


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //lib64/python3.8/

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.8-x86_64-linux-gnu Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
tkinter Directory - -
turtledemo Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
LICENSE.txt File 13937 bytes June 06 2023 13:32:21.
__future__.py File 5147 bytes June 06 2023 13:32:21.
__phello__.foo.py File 64 bytes June 06 2023 13:32:21.
_bootlocale.py File 1801 bytes June 06 2023 13:32:21.
_collections_abc.py File 26100 bytes June 06 2023 13:32:21.
_compat_pickle.py File 8749 bytes June 06 2023 13:32:21.
_compression.py File 5340 bytes June 06 2023 13:32:21.
_dummy_thread.py File 6027 bytes June 06 2023 13:32:21.
_markupbase.py File 14598 bytes June 06 2023 13:32:21.
_osx_support.py File 21774 bytes June 06 2023 13:32:21.
_py_abc.py File 6189 bytes June 06 2023 13:32:21.
_pydecimal.py File 228666 bytes June 06 2023 13:32:21.
_pyio.py File 93177 bytes June 06 2023 13:32:21.
_sitebuiltins.py File 3115 bytes June 06 2023 13:32:21.
_strptime.py File 25268 bytes June 06 2023 13:32:21.
_sysconfigdata__linux_x86_64-linux-gnu.py File 38510 bytes October 17 2023 18:12:19.
_sysconfigdata_d_linux_x86_64-linux-gnu.py File 38237 bytes October 17 2023 18:03:44.
_threading_local.py File 7220 bytes June 06 2023 13:32:21.
_weakrefset.py File 5735 bytes June 06 2023 13:32:21.
abc.py File 4489 bytes June 06 2023 13:32:21.
aifc.py File 32814 bytes June 06 2023 13:32:21.
antigravity.py File 477 bytes June 06 2023 13:32:21.
argparse.py File 96015 bytes June 06 2023 13:32:21.
ast.py File 19234 bytes June 06 2023 13:32:21.
asynchat.py File 11328 bytes June 06 2023 13:32:21.
asyncore.py File 20094 bytes June 06 2023 13:32:21.
base64.py File 20382 bytes June 06 2023 13:32:21.
bdb.py File 32056 bytes June 06 2023 13:32:21.
binhex.py File 13954 bytes June 06 2023 13:32:21.
bisect.py File 2214 bytes June 06 2023 13:32:21.
bz2.py File 12558 bytes June 06 2023 13:32:21.
cProfile.py File 7010 bytes June 06 2023 13:32:21.
calendar.py File 24832 bytes June 06 2023 13:32:21.
cgi.py File 33934 bytes October 17 2023 18:02:14.
cgitb.py File 12096 bytes June 06 2023 13:32:21.
chunk.py File 5435 bytes June 06 2023 13:32:21.
cmd.py File 14860 bytes June 06 2023 13:32:21.
code.py File 10622 bytes June 06 2023 13:32:21.
codecs.py File 36667 bytes June 06 2023 13:32:21.
codeop.py File 6330 bytes June 06 2023 13:32:21.
colorsys.py File 4064 bytes June 06 2023 13:32:21.
compileall.py File 13678 bytes June 06 2023 13:32:21.
configparser.py File 54374 bytes June 06 2023 13:32:21.
contextlib.py File 24995 bytes June 06 2023 13:32:21.
contextvars.py File 129 bytes June 06 2023 13:32:21.
copy.py File 8661 bytes June 06 2023 13:32:21.
copyreg.py File 7135 bytes June 06 2023 13:32:21.
crypt.py File 3610 bytes June 06 2023 13:32:21.
csv.py File 16144 bytes June 06 2023 13:32:21.
dataclasses.py File 49973 bytes June 06 2023 13:32:21.
datetime.py File 88287 bytes June 06 2023 13:32:21.
decimal.py File 320 bytes June 06 2023 13:32:21.
difflib.py File 84058 bytes June 06 2023 13:32:21.
dis.py File 20570 bytes June 06 2023 13:32:21.
doctest.py File 104543 bytes June 06 2023 13:32:21.
dummy_threading.py File 2815 bytes June 06 2023 13:32:21.
enum.py File 38136 bytes June 06 2023 13:32:21.
filecmp.py File 9830 bytes June 06 2023 13:32:21.
fileinput.py File 14709 bytes June 06 2023 13:32:21.
fnmatch.py File 4079 bytes June 06 2023 13:32:21.
formatter.py File 15143 bytes June 06 2023 13:32:21.
fractions.py File 24329 bytes June 06 2023 13:32:21.
ftplib.py File 35129 bytes June 06 2023 13:32:21.
functools.py File 37406 bytes June 06 2023 13:32:21.
genericpath.py File 4975 bytes June 06 2023 13:32:21.
getopt.py File 7489 bytes June 06 2023 13:32:21.
getpass.py File 5994 bytes June 06 2023 13:32:21.
gettext.py File 27138 bytes June 06 2023 13:32:21.
glob.py File 5697 bytes June 06 2023 13:32:21.
gzip.py File 21413 bytes June 06 2023 13:32:21.
hashlib.py File 8333 bytes October 17 2023 18:02:14.
heapq.py File 22877 bytes June 06 2023 13:32:21.
hmac.py File 7850 bytes October 17 2023 18:02:14.
imaplib.py File 53606 bytes June 06 2023 13:32:21.
imghdr.py File 3808 bytes June 06 2023 13:32:21.
imp.py File 10536 bytes June 06 2023 13:32:21.
inspect.py File 118550 bytes June 06 2023 13:32:21.
io.py File 3541 bytes June 06 2023 13:32:21.
ipaddress.py File 71644 bytes June 06 2023 13:32:21.
keyword.py File 945 bytes June 06 2023 13:32:21.
linecache.py File 5330 bytes June 06 2023 13:32:21.
locale.py File 78191 bytes June 06 2023 13:32:21.
lzma.py File 12983 bytes June 06 2023 13:32:21.
mailbox.py File 78661 bytes June 06 2023 13:32:21.
mailcap.py File 9067 bytes June 06 2023 13:32:21.
mimetypes.py File 21664 bytes June 06 2023 13:32:21.
modulefinder.py File 24430 bytes June 06 2023 13:32:21.
netrc.py File 5566 bytes June 06 2023 13:32:21.
nntplib.py File 43261 bytes June 06 2023 13:32:21.
ntpath.py File 27734 bytes June 06 2023 13:32:21.
nturl2path.py File 2887 bytes June 06 2023 13:32:21.
numbers.py File 10244 bytes June 06 2023 13:32:21.
opcode.py File 5808 bytes June 06 2023 13:32:21.
operator.py File 10711 bytes June 06 2023 13:32:21.
optparse.py File 60369 bytes June 06 2023 13:32:21.
os.py File 38995 bytes June 06 2023 13:32:21.
pathlib.py File 52610 bytes June 06 2023 13:32:21.
pdb.py File 62738 bytes June 06 2023 13:32:21.
pickle.py File 64467 bytes June 06 2023 13:32:21.
pickletools.py File 93486 bytes June 06 2023 13:32:21.
pipes.py File 8916 bytes June 06 2023 13:32:21.
pkgutil.py File 21500 bytes June 06 2023 13:32:21.
platform.py File 40425 bytes June 06 2023 13:32:21.
plistlib.py File 32220 bytes June 06 2023 13:32:21.
poplib.py File 15077 bytes June 06 2023 13:32:21.
posixpath.py File 15627 bytes June 06 2023 13:32:21.
pprint.py File 21484 bytes June 06 2023 13:32:21.
profile.py File 23546 bytes June 06 2023 13:32:21.
pstats.py File 27345 bytes June 06 2023 13:32:21.
pty.py File 4807 bytes June 06 2023 13:32:21.
py_compile.py File 8203 bytes October 17 2023 18:02:14.
pyclbr.py File 15255 bytes June 06 2023 13:32:21.
pydoc.py File 106700 bytes October 17 2023 18:12:57.
queue.py File 11356 bytes June 06 2023 13:32:21.
quopri.py File 7252 bytes June 06 2023 13:32:21.
random.py File 28802 bytes June 06 2023 13:32:21.
re.py File 15861 bytes June 06 2023 13:32:21.
reprlib.py File 5267 bytes June 06 2023 13:32:21.
rlcompleter.py File 7097 bytes June 06 2023 13:32:21.
runpy.py File 12052 bytes June 06 2023 13:32:21.
sched.py File 6442 bytes June 06 2023 13:32:21.
secrets.py File 2038 bytes June 06 2023 13:32:21.
selectors.py File 18561 bytes June 06 2023 13:32:21.
shelve.py File 8527 bytes June 06 2023 13:32:21.
shlex.py File 13325 bytes June 06 2023 13:32:21.
shutil.py File 51761 bytes June 06 2023 13:32:21.
signal.py File 2273 bytes June 06 2023 13:32:21.
site.py File 21838 bytes October 17 2023 18:02:14.
smtpd.py File 34709 bytes June 06 2023 13:32:21.
smtplib.py File 45001 bytes June 06 2023 13:32:21.
sndhdr.py File 7099 bytes June 06 2023 13:32:21.
socket.py File 35243 bytes June 06 2023 13:32:21.
socketserver.py File 27296 bytes June 06 2023 13:32:21.
sre_compile.py File 26695 bytes June 06 2023 13:32:21.
sre_constants.py File 7154 bytes June 06 2023 13:32:21.
sre_parse.py File 40230 bytes June 06 2023 13:32:21.
ssl.py File 50760 bytes June 06 2023 13:32:21.
stat.py File 5485 bytes June 06 2023 13:32:21.
statistics.py File 39690 bytes June 06 2023 13:32:21.
string.py File 10535 bytes June 06 2023 13:32:21.
stringprep.py File 12917 bytes June 06 2023 13:32:21.
struct.py File 257 bytes June 06 2023 13:32:21.
subprocess.py File 78250 bytes June 06 2023 13:32:21.
sunau.py File 18375 bytes June 06 2023 13:32:21.
symbol.py File 2109 bytes October 17 2023 18:04:15.
symtable.py File 8021 bytes June 06 2023 13:32:21.
sysconfig.py File 24896 bytes October 17 2023 18:12:55.
tabnanny.py File 11406 bytes June 06 2023 13:32:21.
tarfile.py File 106473 bytes October 17 2023 18:02:14.
telnetlib.py File 23254 bytes June 06 2023 13:32:21.
tempfile.py File 27537 bytes June 06 2023 13:32:21.
textwrap.py File 19407 bytes June 06 2023 13:32:21.
this.py File 1003 bytes June 06 2023 13:32:21.
threading.py File 50820 bytes June 06 2023 13:32:21.
timeit.py File 13480 bytes June 06 2023 13:32:21.
token.py File 2368 bytes June 06 2023 13:32:21.
tokenize.py File 25841 bytes June 06 2023 13:32:21.
trace.py File 29870 bytes June 06 2023 13:32:21.
traceback.py File 23611 bytes June 06 2023 13:32:21.
tracemalloc.py File 17076 bytes June 06 2023 13:32:21.
tty.py File 879 bytes June 06 2023 13:32:21.
turtle.py File 143716 bytes June 06 2023 13:32:21.
types.py File 9713 bytes June 06 2023 13:32:21.
typing.py File 68962 bytes June 06 2023 13:32:21.
uu.py File 7277 bytes October 17 2023 18:12:57.
uuid.py File 30515 bytes October 17 2023 18:02:14.
warnings.py File 19688 bytes June 06 2023 13:32:21.
wave.py File 18230 bytes June 06 2023 13:32:21.
weakref.py File 21387 bytes June 06 2023 13:32:21.
webbrowser.py File 24083 bytes June 06 2023 13:32:21.
xdrlib.py File 5913 bytes June 06 2023 13:32:21.
zipapp.py File 7535 bytes June 06 2023 13:32:21.
zipfile.py File 87728 bytes June 06 2023 13:32:21.
zipimport.py File 30765 bytes June 06 2023 13:32:21.

Reading File: //lib64/python3.8//random.py

"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           pick weighted random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from warnings import warn as _warn
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from _collections_abc import Set as _Set, Sequence as _Sequence
from itertools import accumulate as _accumulate, repeat as _repeat
from bisect import bisect as _bisect
import os as _os

try:
    # hashlib is pretty heavy to load, try lean internal module first
    from _sha512 import sha512 as _sha512
except ImportError:
    # fallback to official implementation
    from hashlib import sha512 as _sha512


__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate", "getrandbits", "choices",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), and setstate().
    Optionally, implement a getrandbits() method so that randrange()
    can cover arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def __init_subclass__(cls, /, **kwargs):
        """Control how subclasses generate random integers.

        The algorithm a subclass can use depends on the random() and/or
        getrandbits() implementation available to it and determines
        whether it can generate random integers from arbitrarily large
        ranges.
        """

        for c in cls.__mro__:
            if '_randbelow' in c.__dict__:
                # just inherit it
                break
            if 'getrandbits' in c.__dict__:
                cls._randbelow = cls._randbelow_with_getrandbits
                break
            if 'random' in c.__dict__:
                cls._randbelow = cls._randbelow_without_getrandbits
                break

    def seed(self, a=None, version=2):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If *a* is an int, all bits are used.

        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1 (provided for reproducing random
        sequences from older versions of Python), the algorithm for str and
        bytes generates a narrower range of seeds.

        """

        if version == 1 and isinstance(a, (str, bytes)):
            a = a.decode('latin-1') if isinstance(a, bytes) else a
            x = ord(a[0]) << 7 if a else 0
            for c in map(ord, a):
                x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
            x ^= len(a)
            a = -2 if x == -1 else x

        if version == 2 and isinstance(a, (str, bytes, bytearray)):
            if isinstance(a, str):
                a = a.encode()
            a += _sha512(a).digest()
            a = int.from_bytes(a, 'big')

        super().seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super().getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super().setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple(x % (2**32) for x in internalstate)
            except ValueError as e:
                raise TypeError from e
            super().setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
    # longer called; we leave it here because it has been here since random was
    # rewritten back in 2001 and why risk breaking something.
    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError("non-integer arg 1 for randrange()")
        if stop is None:
            if istart > 0:
                return self._randbelow(istart)
            raise ValueError("empty range for randrange()")

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError("non-integer stop for randrange()")
        width = istop - istart
        if step == 1 and width > 0:
            return istart + self._randbelow(width)
        if step == 1:
            raise ValueError("empty range for randrange() (%d, %d, %d)" % (istart, istop, width))

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError("non-integer step for randrange()")
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError("zero step for randrange()")

        if n <= 0:
            raise ValueError("empty range for randrange()")

        return istart + istep*self._randbelow(n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow_with_getrandbits(self, n):
        "Return a random int in the range [0,n).  Raises ValueError if n==0."

        getrandbits = self.getrandbits
        k = n.bit_length()  # don't use (n-1) here because n can be 1
        r = getrandbits(k)          # 0 <= r < 2**k
        while r >= n:
            r = getrandbits(k)
        return r

    def _randbelow_without_getrandbits(self, n, int=int, maxsize=1<<BPF):
        """Return a random int in the range [0,n).  Raises ValueError if n==0.

        The implementation does not use getrandbits, but only random.
        """

        random = self.random
        if n >= maxsize:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large.\n"
                "To remove the range limitation, add a getrandbits() method.")
            return int(random() * n)
        if n == 0:
            raise ValueError("Boundary cannot be zero")
        rem = maxsize % n
        limit = (maxsize - rem) / maxsize   # int(limit * maxsize) % n == 0
        r = random()
        while r >= limit:
            r = random()
        return int(r*maxsize) % n

    _randbelow = _randbelow_with_getrandbits

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        try:
            i = self._randbelow(len(seq))
        except ValueError:
            raise IndexError('Cannot choose from an empty sequence') from None
        return seq[i]

    def shuffle(self, x, random=None):
        """Shuffle list x in place, and return None.

        Optional argument random is a 0-argument function returning a
        random float in [0.0, 1.0); if it is the default None, the
        standard random.random will be used.

        """

        if random is None:
            randbelow = self._randbelow
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = randbelow(i+1)
                x[i], x[j] = x[j], x[i]
        else:
            _int = int
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = _int(random() * (i+1))
                x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence or set.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use range as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(range(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        # The number of calls to _randbelow() is kept at or near k, the
        # theoretical minimum.  This is important because running time
        # is dominated by _randbelow() and because it extracts the
        # least entropy from the underlying random number generators.

        # Memory requirements are kept to the smaller of a k-length
        # set or an n-length list.

        # There are other sampling algorithms that do not require
        # auxiliary memory, but they were rejected because they made
        # too many calls to _randbelow(), making them slower and
        # causing them to eat more entropy than necessary.

        if isinstance(population, _Set):
            population = tuple(population)
        if not isinstance(population, _Sequence):
            raise TypeError("Population must be a sequence or set.  For dicts, use list(d).")
        randbelow = self._randbelow
        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("Sample larger than population or is negative")
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize:
            # An n-length list is smaller than a k-length set
            pool = list(population)
            for i in range(k):         # invariant:  non-selected at [0,n-i)
                j = randbelow(n-i)
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            selected = set()
            selected_add = selected.add
            for i in range(k):
                j = randbelow(n)
                while j in selected:
                    j = randbelow(n)
                selected_add(j)
                result[i] = population[j]
        return result

    def choices(self, population, weights=None, *, cum_weights=None, k=1):
        """Return a k sized list of population elements chosen with replacement.

        If the relative weights or cumulative weights are not specified,
        the selections are made with equal probability.

        """
        random = self.random
        n = len(population)
        if cum_weights is None:
            if weights is None:
                _int = int
                n += 0.0    # convert to float for a small speed improvement
                return [population[_int(random() * n)] for i in _repeat(None, k)]
            cum_weights = list(_accumulate(weights))
        elif weights is not None:
            raise TypeError('Cannot specify both weights and cumulative weights')
        if len(cum_weights) != n:
            raise ValueError('The number of weights does not match the population')
        bisect = _bisect
        total = cum_weights[-1] + 0.0   # convert to float
        hi = n - 1
        return [population[bisect(cum_weights, random() * total, 0, hi)]
                for i in _repeat(None, k)]

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * _sqrt(u * c)

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1/beta)
            return -_log(1.0 - random()) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.0)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.0))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / u ** (1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * (-_log(u)) ** (1.0/beta)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates an int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        numbytes = (k + 7) // 8                       # bits / 8 and rounded up
        x = int.from_bytes(_urandom(numbytes), 'big')
        return x >> (numbytes * 8 - k)                # trim excess bits

    def seed(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print(n, 'times', func.__name__)
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.perf_counter()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.perf_counter()
    print(round(t1-t0, 3), 'sec,', end=' ')
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print('avg %g, stddev %g, min %g, max %g\n' % \
              (avg, stddev, smallest, largest))


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
choices = _inst.choices
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits

if hasattr(_os, "fork"):
    _os.register_at_fork(after_in_child=_inst.seed)


if __name__ == '__main__':
    _test()

SILENT KILLER Tool