SILENT KILLERPanel

Current Path: > > opt > > alt > python34 > lib64 > python3.4


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt//alt/python34/lib64/python3.4

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.4m Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
idlelib Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
plat-linux Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
test Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
__future__.py File 4584 bytes April 17 2024 17:10:02.
__phello__.foo.py File 64 bytes April 17 2024 17:10:01.
_bootlocale.py File 1301 bytes April 17 2024 17:09:57.
_collections_abc.py File 19898 bytes April 17 2024 17:09:57.
_compat_pickle.py File 8318 bytes April 17 2024 17:10:00.
_dummy_thread.py File 4872 bytes April 17 2024 17:10:01.
_markupbase.py File 14598 bytes April 17 2024 17:09:57.
_osx_support.py File 19101 bytes April 17 2024 17:10:01.
_pyio.py File 73893 bytes April 17 2024 17:09:58.
_sitebuiltins.py File 3115 bytes April 17 2024 17:09:58.
_strptime.py File 22053 bytes April 17 2024 17:10:02.
_sysconfigdata.py File 28728 bytes April 17 2024 17:10:01.
_threading_local.py File 7410 bytes April 17 2024 17:09:57.
_weakrefset.py File 5705 bytes April 17 2024 17:09:57.
abc.py File 8624 bytes April 17 2024 17:09:57.
aifc.py File 31578 bytes April 17 2024 17:10:02.
antigravity.py File 475 bytes April 17 2024 17:09:57.
argparse.py File 90027 bytes April 17 2024 17:10:01.
ast.py File 12034 bytes April 17 2024 17:10:01.
asynchat.py File 11825 bytes April 17 2024 17:10:00.
asyncore.py File 20998 bytes April 17 2024 17:10:02.
base64.py File 20180 bytes April 17 2024 17:09:57.
bdb.py File 23354 bytes April 17 2024 17:10:00.
binhex.py File 13928 bytes April 17 2024 17:09:57.
bisect.py File 2595 bytes April 17 2024 17:09:57.
bz2.py File 18860 bytes April 17 2024 17:10:01.
cProfile.py File 5324 bytes April 17 2024 17:09:57.
calendar.py File 22941 bytes April 17 2024 17:10:01.
cgi.py File 35941 bytes April 17 2024 17:10:01.
cgitb.py File 12041 bytes April 17 2024 17:10:02.
chunk.py File 5425 bytes April 17 2024 17:09:58.
cmd.py File 14860 bytes April 17 2024 17:09:57.
code.py File 10037 bytes April 17 2024 17:09:57.
codecs.py File 35910 bytes April 17 2024 17:09:57.
codeop.py File 5994 bytes April 17 2024 17:09:57.
colorsys.py File 4064 bytes April 17 2024 17:09:57.
compileall.py File 9618 bytes April 17 2024 17:09:57.
configparser.py File 49698 bytes April 17 2024 17:09:57.
contextlib.py File 11639 bytes April 17 2024 17:09:57.
copy.py File 9005 bytes April 17 2024 17:09:57.
copyreg.py File 6833 bytes April 17 2024 17:10:01.
crypt.py File 1879 bytes April 17 2024 17:09:57.
csv.py File 16185 bytes April 17 2024 17:09:57.
datetime.py File 75804 bytes April 17 2024 17:10:02.
decimal.py File 228688 bytes April 17 2024 17:10:00.
difflib.py File 81684 bytes April 17 2024 17:09:57.
dis.py File 17160 bytes April 17 2024 17:09:57.
doctest.py File 104492 bytes April 17 2024 17:09:57.
dummy_threading.py File 2815 bytes April 17 2024 17:09:57.
enum.py File 21538 bytes April 17 2024 17:09:57.
filecmp.py File 9830 bytes April 17 2024 17:09:57.
fileinput.py File 14865 bytes April 17 2024 17:09:57.
fnmatch.py File 3163 bytes April 17 2024 17:09:57.
formatter.py File 15173 bytes April 17 2024 17:09:57.
fractions.py File 23203 bytes April 17 2024 17:09:57.
ftplib.py File 38532 bytes April 17 2024 17:09:57.
functools.py File 28511 bytes April 17 2024 17:10:02.
genericpath.py File 3882 bytes April 17 2024 17:10:02.
getopt.py File 7489 bytes April 17 2024 17:10:01.
getpass.py File 6069 bytes April 17 2024 17:09:57.
gettext.py File 20767 bytes April 17 2024 17:10:01.
glob.py File 3461 bytes April 17 2024 17:09:57.
gzip.py File 24314 bytes April 17 2024 17:10:01.
hashlib.py File 9850 bytes April 17 2024 17:10:02.
heapq.py File 17997 bytes April 17 2024 17:09:57.
hmac.py File 5063 bytes April 17 2024 17:09:58.
imaplib.py File 50267 bytes April 17 2024 17:10:01.
imghdr.py File 3528 bytes April 17 2024 17:10:01.
imp.py File 9984 bytes April 17 2024 17:09:57.
inspect.py File 104640 bytes April 17 2024 17:10:00.
io.py File 3396 bytes April 17 2024 17:09:57.
ipaddress.py File 71598 bytes April 17 2024 17:10:01.
keyword.py File 2222 bytes April 17 2024 17:10:01.
linecache.py File 3953 bytes April 17 2024 17:09:57.
locale.py File 74530 bytes April 17 2024 17:10:00.
lzma.py File 19371 bytes April 17 2024 17:10:02.
macpath.py File 5619 bytes April 17 2024 17:09:57.
macurl2path.py File 2732 bytes April 17 2024 17:09:57.
mailbox.py File 78382 bytes April 17 2024 17:10:00.
mailcap.py File 7437 bytes April 17 2024 17:09:57.
mimetypes.py File 20781 bytes April 17 2024 17:10:00.
modulefinder.py File 23421 bytes April 17 2024 17:09:57.
netrc.py File 5748 bytes April 17 2024 17:09:58.
nntplib.py File 43082 bytes April 17 2024 17:09:57.
ntpath.py File 20477 bytes April 17 2024 17:09:57.
nturl2path.py File 2444 bytes April 17 2024 17:10:01.
numbers.py File 10243 bytes April 17 2024 17:10:02.
opcode.py File 5442 bytes April 17 2024 17:10:02.
operator.py File 9195 bytes April 17 2024 17:10:00.
optparse.py File 60346 bytes April 17 2024 17:10:01.
os.py File 33882 bytes April 17 2024 17:09:57.
pathlib.py File 42467 bytes April 17 2024 17:10:00.
pdb.py File 60992 bytes April 17 2024 17:09:57.
pickle.py File 55989 bytes April 17 2024 17:09:58.
pickletools.py File 91762 bytes April 17 2024 17:09:57.
pipes.py File 8916 bytes April 17 2024 17:10:01.
pkgutil.py File 21215 bytes April 17 2024 17:09:57.
platform.py File 46761 bytes April 17 2024 17:09:57.
plistlib.py File 31791 bytes April 17 2024 17:09:57.
poplib.py File 14319 bytes April 17 2024 17:09:57.
posixpath.py File 13448 bytes April 17 2024 17:09:57.
pprint.py File 14919 bytes April 17 2024 17:09:57.
profile.py File 22032 bytes April 17 2024 17:09:57.
pstats.py File 26316 bytes April 17 2024 17:09:57.
pty.py File 4763 bytes April 17 2024 17:09:57.
py_compile.py File 7103 bytes April 17 2024 17:10:00.
pyclbr.py File 13520 bytes April 17 2024 17:09:57.
pydoc.py File 103011 bytes April 17 2024 17:09:57.
queue.py File 8835 bytes April 17 2024 17:10:01.
quopri.py File 7265 bytes April 17 2024 17:10:01.
random.py File 26084 bytes April 17 2024 17:09:57.
re.py File 15604 bytes April 17 2024 17:09:57.
reprlib.py File 5110 bytes April 17 2024 17:09:57.
rlcompleter.py File 6069 bytes April 17 2024 17:10:02.
runpy.py File 10816 bytes April 17 2024 17:09:57.
sched.py File 6354 bytes April 17 2024 17:10:00.
selectors.py File 17097 bytes April 17 2024 17:09:57.
shelve.py File 8528 bytes April 17 2024 17:10:01.
shlex.py File 11548 bytes April 17 2024 17:10:02.
shutil.py File 39902 bytes April 17 2024 17:10:01.
site.py File 21553 bytes April 17 2024 17:10:00.
smtpd.py File 29991 bytes April 17 2024 17:09:57.
smtplib.py File 38971 bytes April 17 2024 17:09:57.
sndhdr.py File 6256 bytes April 17 2024 17:10:01.
socket.py File 19067 bytes April 17 2024 17:10:02.
socketserver.py File 24372 bytes April 17 2024 17:10:02.
sre_compile.py File 19903 bytes April 17 2024 17:09:57.
sre_constants.py File 7267 bytes April 17 2024 17:09:57.
sre_parse.py File 31429 bytes April 17 2024 17:09:57.
ssl.py File 34747 bytes April 17 2024 17:10:00.
stat.py File 4400 bytes April 17 2024 17:10:00.
statistics.py File 19556 bytes April 17 2024 17:09:57.
string.py File 11445 bytes April 17 2024 17:10:01.
stringprep.py File 12917 bytes April 17 2024 17:09:58.
struct.py File 257 bytes April 17 2024 17:09:57.
subprocess.py File 64549 bytes April 17 2024 17:09:57.
sunau.py File 18095 bytes April 17 2024 17:09:57.
symbol.py File 2053 bytes April 17 2024 17:09:57.
symtable.py File 7404 bytes April 17 2024 17:10:01.
sysconfig.py File 24632 bytes April 17 2024 17:10:01.
tabnanny.py File 11410 bytes April 17 2024 17:10:01.
tarfile.py File 91557 bytes April 17 2024 17:09:57.
telnetlib.py File 23074 bytes April 17 2024 17:09:57.
tempfile.py File 22525 bytes April 17 2024 17:09:57.
textwrap.py File 19282 bytes April 17 2024 17:09:57.
this.py File 1003 bytes April 17 2024 17:09:58.
threading.py File 48802 bytes April 17 2024 17:10:00.
timeit.py File 11972 bytes April 17 2024 17:09:57.
token.py File 3034 bytes April 17 2024 17:09:57.
tokenize.py File 25596 bytes April 17 2024 17:10:01.
trace.py File 31487 bytes April 17 2024 17:09:57.
traceback.py File 11167 bytes April 17 2024 17:10:01.
tracemalloc.py File 15651 bytes April 17 2024 17:10:01.
tty.py File 879 bytes April 17 2024 17:09:57.
types.py File 5411 bytes April 17 2024 17:09:57.
uu.py File 6766 bytes April 17 2024 17:09:57.
uuid.py File 23724 bytes April 17 2024 17:09:57.
warnings.py File 14303 bytes April 17 2024 17:09:57.
wave.py File 17682 bytes April 17 2024 17:09:57.
weakref.py File 19384 bytes April 17 2024 17:10:00.
webbrowser.py File 21432 bytes April 17 2024 17:10:01.
xdrlib.py File 5913 bytes April 17 2024 17:10:02.
zipfile.py File 68547 bytes April 17 2024 17:10:02.

Reading File: //opt//alt/python34/lib64/python3.4/statistics.py

##  Module statistics.py
##
##  Copyright (c) 2013 Steven D'Aprano <steve+python@pearwood.info>.
##
##  Licensed under the Apache License, Version 2.0 (the "License");
##  you may not use this file except in compliance with the License.
##  You may obtain a copy of the License at
##
##  http://www.apache.org/licenses/LICENSE-2.0
##
##  Unless required by applicable law or agreed to in writing, software
##  distributed under the License is distributed on an "AS IS" BASIS,
##  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
##  See the License for the specific language governing permissions and
##  limitations under the License.


"""
Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  =============================================
Function            Description
==================  =============================================
mean                Arithmetic mean (average) of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
==================  =============================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

"""

__all__ = [ 'StatisticsError',
            'pstdev', 'pvariance', 'stdev', 'variance',
            'median',  'median_low', 'median_high', 'median_grouped',
            'mean', 'mode',
          ]


import collections
import math

from fractions import Fraction
from decimal import Decimal
from itertools import groupby



# === Exceptions ===

class StatisticsError(ValueError):
    pass


# === Private utilities ===

def _sum(data, start=0):
    """_sum(data [, start]) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    If optional argument ``start`` is given, it is added to the total.
    If ``data`` is empty, ``start`` (defaulting to 0) is returned.


    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
    (<class 'float'>, Fraction(11, 1), 5)

    Some sources of round-off error will be avoided:

    >>> _sum([1e50, 1, -1e50] * 1000)  # Built-in sum returns zero.
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    """
    count = 0
    n, d = _exact_ratio(start)
    partials = {d: n}
    partials_get = partials.get
    T = _coerce(int, type(start))
    for typ, values in groupby(data, type):
        T = _coerce(T, typ)  # or raise TypeError
        for n,d in map(_exact_ratio, values):
            count += 1
            partials[d] = partials_get(d, 0) + n
    if None in partials:
        # The sum will be a NAN or INF. We can ignore all the finite
        # partials, and just look at this special one.
        total = partials[None]
        assert not _isfinite(total)
    else:
        # Sum all the partial sums using builtin sum.
        # FIXME is this faster if we sum them in order of the denominator?
        total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
    return (T, total, count)


def _isfinite(x):
    try:
        return x.is_finite()  # Likely a Decimal.
    except AttributeError:
        return math.isfinite(x)  # Coerces to float first.


def _coerce(T, S):
    """Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    """
    # See http://bugs.python.org/issue24068.
    assert T is not bool, "initial type T is bool"
    # If the types are the same, no need to coerce anything. Put this
    # first, so that the usual case (no coercion needed) happens as soon
    # as possible.
    if T is S:  return T
    # Mixed int & other coerce to the other type.
    if S is int or S is bool:  return T
    if T is int:  return S
    # If one is a (strict) subclass of the other, coerce to the subclass.
    if issubclass(S, T):  return S
    if issubclass(T, S):  return T
    # Ints coerce to the other type.
    if issubclass(T, int):  return S
    if issubclass(S, int):  return T
    # Mixed fraction & float coerces to float (or float subclass).
    if issubclass(T, Fraction) and issubclass(S, float):
        return S
    if issubclass(T, float) and issubclass(S, Fraction):
        return T
    # Any other combination is disallowed.
    msg = "don't know how to coerce %s and %s"
    raise TypeError(msg % (T.__name__, S.__name__))


def _exact_ratio(x):
    """Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    """
    try:
        # Optimise the common case of floats. We expect that the most often
        # used numeric type will be builtin floats, so try to make this as
        # fast as possible.
        if type(x) is float:
            return x.as_integer_ratio()
        try:
            # x may be an int, Fraction, or Integral ABC.
            return (x.numerator, x.denominator)
        except AttributeError:
            try:
                # x may be a float subclass.
                return x.as_integer_ratio()
            except AttributeError:
                try:
                    # x may be a Decimal.
                    return _decimal_to_ratio(x)
                except AttributeError:
                    # Just give up?
                    pass
    except (OverflowError, ValueError):
        # float NAN or INF.
        assert not math.isfinite(x)
        return (x, None)
    msg = "can't convert type '{}' to numerator/denominator"
    raise TypeError(msg.format(type(x).__name__))


# FIXME This is faster than Fraction.from_decimal, but still too slow.
def _decimal_to_ratio(d):
    """Convert Decimal d to exact integer ratio (numerator, denominator).

    >>> from decimal import Decimal
    >>> _decimal_to_ratio(Decimal("2.6"))
    (26, 10)

    """
    sign, digits, exp = d.as_tuple()
    if exp in ('F', 'n', 'N'):  # INF, NAN, sNAN
        assert not d.is_finite()
        return (d, None)
    num = 0
    for digit in digits:
        num = num*10 + digit
    if exp < 0:
        den = 10**-exp
    else:
        num *= 10**exp
        den = 1
    if sign:
        num = -num
    return (num, den)


def _convert(value, T):
    """Convert value to given numeric type T."""
    if type(value) is T:
        # This covers the cases where T is Fraction, or where value is
        # a NAN or INF (Decimal or float).
        return value
    if issubclass(T, int) and value.denominator != 1:
        T = float
    try:
        # FIXME: what do we do if this overflows?
        return T(value)
    except TypeError:
        if issubclass(T, Decimal):
            return T(value.numerator)/T(value.denominator)
        else:
            raise


def _counts(data):
    # Generate a table of sorted (value, frequency) pairs.
    table = collections.Counter(iter(data)).most_common()
    if not table:
        return table
    # Extract the values with the highest frequency.
    maxfreq = table[0][1]
    for i in range(1, len(table)):
        if table[i][1] != maxfreq:
            table = table[:i]
            break
    return table


# === Measures of central tendency (averages) ===

def mean(data):
    """Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('mean requires at least one data point')
    T, total, count = _sum(data)
    assert count == n
    return _convert(total/n, T)


# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
    """Return the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        i = n//2
        return (data[i - 1] + data[i])/2


def median_low(data):
    """Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        return data[n//2 - 1]


def median_high(data):
    """Return the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    return data[n//2]


def median_grouped(data, interval=1):
    """Return the 50th percentile (median) of grouped continuous data.

    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
    3.7
    >>> median_grouped([52, 52, 53, 54])
    52.5

    This calculates the median as the 50th percentile, and should be
    used when your data is continuous and grouped. In the above example,
    the values 1, 2, 3, etc. actually represent the midpoint of classes
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
    class 3.5-4.5, and interpolation is used to estimate it.

    Optional argument ``interval`` represents the class interval, and
    defaults to 1. Changing the class interval naturally will change the
    interpolated 50th percentile value:

    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
    3.25
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
    3.5

    This function does not check whether the data points are at least
    ``interval`` apart.
    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    elif n == 1:
        return data[0]
    # Find the value at the midpoint. Remember this corresponds to the
    # centre of the class interval.
    x = data[n//2]
    for obj in (x, interval):
        if isinstance(obj, (str, bytes)):
            raise TypeError('expected number but got %r' % obj)
    try:
        L = x - interval/2  # The lower limit of the median interval.
    except TypeError:
        # Mixed type. For now we just coerce to float.
        L = float(x) - float(interval)/2
    cf = data.index(x)  # Number of values below the median interval.
    # FIXME The following line could be more efficient for big lists.
    f = data.count(x)  # Number of data points in the median interval.
    return L + interval*(n/2 - cf)/f


def mode(data):
    """Return the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

    >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
    3

    This also works with nominal (non-numeric) data:

    >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
    'red'

    If there is not exactly one most common value, ``mode`` will raise
    StatisticsError.
    """
    # Generate a table of sorted (value, frequency) pairs.
    table = _counts(data)
    if len(table) == 1:
        return table[0][0]
    elif table:
        raise StatisticsError(
                'no unique mode; found %d equally common values' % len(table)
                )
    else:
        raise StatisticsError('no mode for empty data')


# === Measures of spread ===

# See http://mathworld.wolfram.com/Variance.html
#     http://mathworld.wolfram.com/SampleVariance.html
#     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
# Under no circumstances use the so-called "computational formula for
# variance", as that is only suitable for hand calculations with a small
# amount of low-precision data. It has terrible numeric properties.
#
# See a comparison of three computational methods here:
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/

def _ss(data, c=None):
    """Return sum of square deviations of sequence data.

    If ``c`` is None, the mean is calculated in one pass, and the deviations
    from the mean are calculated in a second pass. Otherwise, deviations are
    calculated from ``c`` as given. Use the second case with care, as it can
    lead to garbage results.
    """
    if c is None:
        c = mean(data)
    T, total, count = _sum((x-c)**2 for x in data)
    # The following sum should mathematically equal zero, but due to rounding
    # error may not.
    U, total2, count2 = _sum((x-c) for x in data)
    assert T == U and count == count2
    total -=  total2**2/len(data)
    assert not total < 0, 'negative sum of square deviations: %f' % total
    return (T, total)


def variance(data, xbar=None):
    """Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 2:
        raise StatisticsError('variance requires at least two data points')
    T, ss = _ss(data, xbar)
    return _convert(ss/(n-1), T)


def pvariance(data, mu=None):
    """Return the population variance of ``data``.

    data should be an iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    This function does not check that ``mu`` is actually the mean of ``data``.
    Giving arbitrary values for ``mu`` may lead to invalid or impossible
    results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('pvariance requires at least one data point')
    ss = _ss(data, mu)
    T, ss = _ss(data, mu)
    return _convert(ss/n, T)


def stdev(data, xbar=None):
    """Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    """
    var = variance(data, xbar)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)


def pstdev(data, mu=None):
    """Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    """
    var = pvariance(data, mu)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)

SILENT KILLER Tool