Current Path: > > opt > > alt > python36 > lib64 > > python3.6 >
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
__pycache__ | Directory | - | - | |
asyncio | Directory | - | - | |
collections | Directory | - | - | |
concurrent | Directory | - | - | |
config-3.6m | Directory | - | - | |
ctypes | Directory | - | - | |
curses | Directory | - | - | |
dbm | Directory | - | - | |
distutils | Directory | - | - | |
Directory | - | - | ||
encodings | Directory | - | - | |
ensurepip | Directory | - | - | |
html | Directory | - | - | |
http | Directory | - | - | |
idlelib | Directory | - | - | |
importlib | Directory | - | - | |
json | Directory | - | - | |
lib-dynload | Directory | - | - | |
lib2to3 | Directory | - | - | |
logging | Directory | - | - | |
multiprocessing | Directory | - | - | |
pydoc_data | Directory | - | - | |
site-packages | Directory | - | - | |
sqlite3 | Directory | - | - | |
test | Directory | - | - | |
unittest | Directory | - | - | |
urllib | Directory | - | - | |
venv | Directory | - | - | |
wsgiref | Directory | - | - | |
xml | Directory | - | - | |
xmlrpc | Directory | - | - | |
__future__.py | File | 4841 bytes | April 17 2024 17:19:39. | |
__phello__.foo.py | File | 64 bytes | April 17 2024 17:19:38. | |
_bootlocale.py | File | 1301 bytes | April 17 2024 17:19:35. | |
_collections_abc.py | File | 26392 bytes | April 17 2024 17:19:35. | |
_compat_pickle.py | File | 8749 bytes | April 17 2024 17:19:38. | |
_compression.py | File | 5340 bytes | April 17 2024 17:19:35. | |
_dummy_thread.py | File | 5118 bytes | April 17 2024 17:19:38. | |
_markupbase.py | File | 14598 bytes | April 17 2024 17:19:34. | |
_osx_support.py | File | 19138 bytes | April 17 2024 17:19:38. | |
_pydecimal.py | File | 230228 bytes | April 17 2024 17:19:34. | |
_pyio.py | File | 88097 bytes | April 17 2024 17:19:35. | |
_sitebuiltins.py | File | 3115 bytes | April 17 2024 17:19:35. | |
_strptime.py | File | 24747 bytes | April 17 2024 17:19:39. | |
_sysconfigdata_dm_linux_x86_64-linux-gnu.py | File | 27823 bytes | April 17 2024 17:19:34. | |
_sysconfigdata_m_linux_x86_64-linux-gnu.py | File | 26288 bytes | April 17 2024 17:19:39. | |
_threading_local.py | File | 7214 bytes | April 17 2024 17:19:34. | |
_weakrefset.py | File | 5705 bytes | April 17 2024 17:19:34. | |
abc.py | File | 8727 bytes | April 17 2024 17:19:34. | |
aifc.py | File | 32454 bytes | April 17 2024 17:19:39. | |
antigravity.py | File | 477 bytes | April 17 2024 17:19:35. | |
argparse.py | File | 90372 bytes | April 17 2024 17:19:38. | |
ast.py | File | 12166 bytes | April 17 2024 17:19:38. | |
asynchat.py | File | 11328 bytes | April 17 2024 17:19:38. | |
asyncore.py | File | 20159 bytes | April 17 2024 17:19:39. | |
base64.py | File | 20391 bytes | April 17 2024 17:19:35. | |
bdb.py | File | 23556 bytes | April 17 2024 17:19:38. | |
binhex.py | File | 13954 bytes | April 17 2024 17:19:34. | |
bisect.py | File | 2595 bytes | April 17 2024 17:19:34. | |
bz2.py | File | 12478 bytes | April 17 2024 17:19:38. | |
cProfile.py | File | 5383 bytes | April 17 2024 17:19:34. | |
calendar.py | File | 23213 bytes | April 17 2024 17:19:38. | |
cgi.py | File | 37074 bytes | April 17 2024 17:19:38. | |
cgitb.py | File | 12018 bytes | April 17 2024 17:19:39. | |
chunk.py | File | 5425 bytes | April 17 2024 17:19:35. | |
cmd.py | File | 14860 bytes | April 17 2024 17:19:34. | |
code.py | File | 10614 bytes | April 17 2024 17:19:35. | |
codecs.py | File | 36276 bytes | April 17 2024 17:19:34. | |
codeop.py | File | 5994 bytes | April 17 2024 17:19:34. | |
colorsys.py | File | 4064 bytes | April 17 2024 17:19:34. | |
compileall.py | File | 12125 bytes | April 17 2024 17:19:34. | |
configparser.py | File | 53592 bytes | April 17 2024 17:19:34. | |
contextlib.py | File | 13162 bytes | April 17 2024 17:19:34. | |
copy.py | File | 8815 bytes | April 17 2024 17:19:34. | |
copyreg.py | File | 7007 bytes | April 17 2024 17:19:38. | |
crypt.py | File | 1864 bytes | April 17 2024 17:19:34. | |
csv.py | File | 16180 bytes | April 17 2024 17:19:35. | |
datetime.py | File | 82034 bytes | April 17 2024 17:19:39. | |
decimal.py | File | 320 bytes | April 17 2024 17:19:38. | |
difflib.py | File | 84377 bytes | April 17 2024 17:19:35. | |
dis.py | File | 18132 bytes | April 17 2024 17:19:34. | |
doctest.py | File | 104391 bytes | April 17 2024 17:19:35. | |
dummy_threading.py | File | 2815 bytes | April 17 2024 17:19:34. | |
enum.py | File | 33606 bytes | April 17 2024 17:19:35. | |
filecmp.py | File | 9830 bytes | April 17 2024 17:19:34. | |
fileinput.py | File | 14471 bytes | April 17 2024 17:19:35. | |
fnmatch.py | File | 3166 bytes | April 17 2024 17:19:34. | |
formatter.py | File | 15143 bytes | April 17 2024 17:19:35. | |
fractions.py | File | 23639 bytes | April 17 2024 17:19:34. | |
ftplib.py | File | 35617 bytes | April 17 2024 17:19:34. | |
functools.py | File | 31346 bytes | April 17 2024 17:19:39. | |
genericpath.py | File | 4756 bytes | April 17 2024 17:19:39. | |
getopt.py | File | 7489 bytes | April 17 2024 17:19:38. | |
getpass.py | File | 5994 bytes | April 17 2024 17:19:34. | |
gettext.py | File | 21530 bytes | April 17 2024 17:19:38. | |
glob.py | File | 5638 bytes | April 17 2024 17:19:34. | |
gzip.py | File | 20334 bytes | April 17 2024 17:19:38. | |
hashlib.py | File | 9533 bytes | April 17 2024 17:19:39. | |
heapq.py | File | 22929 bytes | April 17 2024 17:19:34. | |
hmac.py | File | 5057 bytes | April 17 2024 17:19:35. | |
imaplib.py | File | 53295 bytes | April 17 2024 17:19:38. | |
imghdr.py | File | 3795 bytes | April 17 2024 17:19:38. | |
imp.py | File | 10669 bytes | April 17 2024 17:19:35. | |
inspect.py | File | 116958 bytes | April 17 2024 17:19:38. | |
io.py | File | 3517 bytes | April 17 2024 17:19:35. | |
ipaddress.py | File | 74563 bytes | April 17 2024 17:19:38. | |
keyword.py | File | 2222 bytes | April 17 2024 17:19:38. | |
linecache.py | File | 5312 bytes | April 17 2024 17:19:35. | |
locale.py | File | 77300 bytes | April 17 2024 17:19:38. | |
lzma.py | File | 12983 bytes | April 17 2024 17:19:39. | |
macpath.py | File | 5971 bytes | April 17 2024 17:19:35. | |
macurl2path.py | File | 2732 bytes | April 17 2024 17:19:34. | |
mailbox.py | File | 78624 bytes | April 17 2024 17:19:38. | |
mailcap.py | File | 8104 bytes | April 17 2024 17:19:34. | |
mimetypes.py | File | 21042 bytes | April 17 2024 17:19:38. | |
modulefinder.py | File | 23027 bytes | April 17 2024 17:19:34. | |
netrc.py | File | 5684 bytes | April 17 2024 17:19:35. | |
nntplib.py | File | 43078 bytes | April 17 2024 17:19:34. | |
ntpath.py | File | 23094 bytes | April 17 2024 17:19:34. | |
nturl2path.py | File | 2444 bytes | April 17 2024 17:19:38. | |
numbers.py | File | 10243 bytes | April 17 2024 17:19:39. | |
opcode.py | File | 5822 bytes | April 17 2024 17:19:39. | |
operator.py | File | 10863 bytes | April 17 2024 17:19:38. | |
optparse.py | File | 60371 bytes | April 17 2024 17:19:38. | |
os.py | File | 37526 bytes | April 17 2024 17:19:34. | |
pathlib.py | File | 48982 bytes | April 17 2024 17:19:38. | |
pdb.py | File | 61323 bytes | April 17 2024 17:19:35. | |
pickle.py | File | 55691 bytes | April 17 2024 17:19:35. | |
pickletools.py | File | 91775 bytes | April 17 2024 17:19:34. | |
pipes.py | File | 8916 bytes | April 17 2024 17:19:38. | |
pkgutil.py | File | 21315 bytes | April 17 2024 17:19:35. | |
platform.py | File | 47204 bytes | April 17 2024 17:19:34. | |
plistlib.py | File | 32787 bytes | April 17 2024 17:19:34. | |
poplib.py | File | 14964 bytes | April 17 2024 17:19:34. | |
posixpath.py | File | 15772 bytes | April 17 2024 17:19:35. | |
pprint.py | File | 20860 bytes | April 17 2024 17:19:35. | |
profile.py | File | 22032 bytes | April 17 2024 17:19:35. | |
pstats.py | File | 26564 bytes | April 17 2024 17:19:34. | |
pty.py | File | 4763 bytes | April 17 2024 17:19:34. | |
py_compile.py | File | 7181 bytes | April 17 2024 17:19:38. | |
pyclbr.py | File | 13558 bytes | April 17 2024 17:19:34. | |
pydoc.py | File | 103501 bytes | April 17 2024 17:19:34. | |
queue.py | File | 8780 bytes | April 17 2024 17:19:38. | |
quopri.py | File | 7265 bytes | April 17 2024 17:19:38. | |
random.py | File | 27442 bytes | April 17 2024 17:19:34. | |
re.py | File | 15552 bytes | April 17 2024 17:19:35. | |
reprlib.py | File | 5336 bytes | April 17 2024 17:19:35. | |
rlcompleter.py | File | 7097 bytes | April 17 2024 17:19:39. | |
runpy.py | File | 11959 bytes | April 17 2024 17:19:34. | |
sched.py | File | 6511 bytes | April 17 2024 17:19:38. | |
secrets.py | File | 2038 bytes | April 17 2024 17:19:35. | |
selectors.py | File | 19438 bytes | April 17 2024 17:19:34. | |
shelve.py | File | 8515 bytes | April 17 2024 17:19:38. | |
shlex.py | File | 12956 bytes | April 17 2024 17:19:39. | |
shutil.py | File | 40540 bytes | April 17 2024 17:19:38. | |
signal.py | File | 2123 bytes | April 17 2024 17:19:38. | |
site.py | File | 21027 bytes | April 17 2024 17:19:38. | |
smtpd.py | File | 34722 bytes | April 17 2024 17:19:35. | |
smtplib.py | File | 44418 bytes | April 17 2024 17:19:34. | |
sndhdr.py | File | 7088 bytes | April 17 2024 17:19:38. | |
socket.py | File | 27443 bytes | April 17 2024 17:19:39. | |
socketserver.py | File | 27010 bytes | April 17 2024 17:19:39. | |
sre_compile.py | File | 19338 bytes | April 17 2024 17:19:34. | |
sre_constants.py | File | 6821 bytes | April 17 2024 17:19:34. | |
sre_parse.py | File | 36536 bytes | April 17 2024 17:19:35. | |
ssl.py | File | 44793 bytes | April 17 2024 17:19:38. | |
stat.py | File | 5038 bytes | April 17 2024 17:19:38. | |
statistics.py | File | 20673 bytes | April 17 2024 17:19:34. | |
string.py | File | 11795 bytes | April 17 2024 17:19:38. | |
stringprep.py | File | 12917 bytes | April 17 2024 17:19:35. | |
struct.py | File | 257 bytes | April 17 2024 17:19:35. | |
subprocess.py | File | 62339 bytes | April 17 2024 17:19:34. | |
sunau.py | File | 18095 bytes | April 17 2024 17:19:34. | |
symbol.py | File | 2122 bytes | April 17 2024 17:19:34. | |
symtable.py | File | 7277 bytes | April 17 2024 17:19:38. | |
sysconfig.py | File | 24984 bytes | April 17 2024 17:19:38. | |
tabnanny.py | File | 11414 bytes | April 17 2024 17:19:38. | |
tarfile.py | File | 93316 bytes | April 17 2024 17:19:34. | |
telnetlib.py | File | 23136 bytes | April 17 2024 17:19:34. | |
tempfile.py | File | 26776 bytes | April 17 2024 17:19:34. | |
textwrap.py | File | 19558 bytes | April 17 2024 17:19:34. | |
this.py | File | 1003 bytes | April 17 2024 17:19:35. | |
threading.py | File | 49029 bytes | April 17 2024 17:19:38. | |
timeit.py | File | 13345 bytes | April 17 2024 17:19:34. | |
token.py | File | 3075 bytes | April 17 2024 17:19:34. | |
tokenize.py | File | 29496 bytes | April 17 2024 17:19:38. | |
trace.py | File | 28736 bytes | April 17 2024 17:19:34. | |
traceback.py | File | 23458 bytes | April 17 2024 17:19:38. | |
tracemalloc.py | File | 16658 bytes | April 17 2024 17:19:38. | |
tty.py | File | 879 bytes | April 17 2024 17:19:34. | |
types.py | File | 8870 bytes | April 17 2024 17:19:34. | |
typing.py | File | 80274 bytes | April 17 2024 17:19:38. | |
uu.py | File | 6909 bytes | April 17 2024 17:19:34. | |
uuid.py | File | 23971 bytes | April 17 2024 17:19:35. | |
warnings.py | File | 18488 bytes | April 17 2024 17:19:35. | |
wave.py | File | 17709 bytes | April 17 2024 17:19:34. | |
weakref.py | File | 20466 bytes | April 17 2024 17:19:38. | |
webbrowser.py | File | 21770 bytes | April 17 2024 17:19:38. | |
xdrlib.py | File | 5913 bytes | April 17 2024 17:19:39. | |
zipapp.py | File | 7157 bytes | April 17 2024 17:19:35. | |
zipfile.py | File | 76282 bytes | April 17 2024 17:19:39. |
""" Basic statistics module. This module provides functions for calculating statistics of data, including averages, variance, and standard deviation. Calculating averages -------------------- ================== ============================================= Function Description ================== ============================================= mean Arithmetic mean (average) of data. harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. median_grouped Median, or 50th percentile, of grouped data. mode Mode (most common value) of data. ================== ============================================= Calculate the arithmetic mean ("the average") of data: >>> mean([-1.0, 2.5, 3.25, 5.75]) 2.625 Calculate the standard median of discrete data: >>> median([2, 3, 4, 5]) 3.5 Calculate the median, or 50th percentile, of data grouped into class intervals centred on the data values provided. E.g. if your data points are rounded to the nearest whole number: >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS 2.8333333333... This should be interpreted in this way: you have two data points in the class interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in the class interval 3.5-4.5. The median of these data points is 2.8333... Calculating variability or spread --------------------------------- ================== ============================================= Function Description ================== ============================================= pvariance Population variance of data. variance Sample variance of data. pstdev Population standard deviation of data. stdev Sample standard deviation of data. ================== ============================================= Calculate the standard deviation of sample data: >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS 4.38961843444... If you have previously calculated the mean, you can pass it as the optional second argument to the four "spread" functions to avoid recalculating it: >>> data = [1, 2, 2, 4, 4, 4, 5, 6] >>> mu = mean(data) >>> pvariance(data, mu) 2.5 Exceptions ---------- A single exception is defined: StatisticsError is a subclass of ValueError. """ __all__ = [ 'StatisticsError', 'pstdev', 'pvariance', 'stdev', 'variance', 'median', 'median_low', 'median_high', 'median_grouped', 'mean', 'mode', 'harmonic_mean', ] import collections import decimal import math import numbers from fractions import Fraction from decimal import Decimal from itertools import groupby, chain from bisect import bisect_left, bisect_right # === Exceptions === class StatisticsError(ValueError): pass # === Private utilities === def _sum(data, start=0): """_sum(data [, start]) -> (type, sum, count) Return a high-precision sum of the given numeric data as a fraction, together with the type to be converted to and the count of items. If optional argument ``start`` is given, it is added to the total. If ``data`` is empty, ``start`` (defaulting to 0) is returned. Examples -------- >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75) (<class 'float'>, Fraction(11, 1), 5) Some sources of round-off error will be avoided: # Built-in sum returns zero. >>> _sum([1e50, 1, -1e50] * 1000) (<class 'float'>, Fraction(1000, 1), 3000) Fractions and Decimals are also supported: >>> from fractions import Fraction as F >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) (<class 'fractions.Fraction'>, Fraction(63, 20), 4) >>> from decimal import Decimal as D >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] >>> _sum(data) (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4) Mixed types are currently treated as an error, except that int is allowed. """ count = 0 n, d = _exact_ratio(start) partials = {d: n} partials_get = partials.get T = _coerce(int, type(start)) for typ, values in groupby(data, type): T = _coerce(T, typ) # or raise TypeError for n,d in map(_exact_ratio, values): count += 1 partials[d] = partials_get(d, 0) + n if None in partials: # The sum will be a NAN or INF. We can ignore all the finite # partials, and just look at this special one. total = partials[None] assert not _isfinite(total) else: # Sum all the partial sums using builtin sum. # FIXME is this faster if we sum them in order of the denominator? total = sum(Fraction(n, d) for d, n in sorted(partials.items())) return (T, total, count) def _isfinite(x): try: return x.is_finite() # Likely a Decimal. except AttributeError: return math.isfinite(x) # Coerces to float first. def _coerce(T, S): """Coerce types T and S to a common type, or raise TypeError. Coercion rules are currently an implementation detail. See the CoerceTest test class in test_statistics for details. """ # See http://bugs.python.org/issue24068. assert T is not bool, "initial type T is bool" # If the types are the same, no need to coerce anything. Put this # first, so that the usual case (no coercion needed) happens as soon # as possible. if T is S: return T # Mixed int & other coerce to the other type. if S is int or S is bool: return T if T is int: return S # If one is a (strict) subclass of the other, coerce to the subclass. if issubclass(S, T): return S if issubclass(T, S): return T # Ints coerce to the other type. if issubclass(T, int): return S if issubclass(S, int): return T # Mixed fraction & float coerces to float (or float subclass). if issubclass(T, Fraction) and issubclass(S, float): return S if issubclass(T, float) and issubclass(S, Fraction): return T # Any other combination is disallowed. msg = "don't know how to coerce %s and %s" raise TypeError(msg % (T.__name__, S.__name__)) def _exact_ratio(x): """Return Real number x to exact (numerator, denominator) pair. >>> _exact_ratio(0.25) (1, 4) x is expected to be an int, Fraction, Decimal or float. """ try: # Optimise the common case of floats. We expect that the most often # used numeric type will be builtin floats, so try to make this as # fast as possible. if type(x) is float or type(x) is Decimal: return x.as_integer_ratio() try: # x may be an int, Fraction, or Integral ABC. return (x.numerator, x.denominator) except AttributeError: try: # x may be a float or Decimal subclass. return x.as_integer_ratio() except AttributeError: # Just give up? pass except (OverflowError, ValueError): # float NAN or INF. assert not _isfinite(x) return (x, None) msg = "can't convert type '{}' to numerator/denominator" raise TypeError(msg.format(type(x).__name__)) def _convert(value, T): """Convert value to given numeric type T.""" if type(value) is T: # This covers the cases where T is Fraction, or where value is # a NAN or INF (Decimal or float). return value if issubclass(T, int) and value.denominator != 1: T = float try: # FIXME: what do we do if this overflows? return T(value) except TypeError: if issubclass(T, Decimal): return T(value.numerator)/T(value.denominator) else: raise def _counts(data): # Generate a table of sorted (value, frequency) pairs. table = collections.Counter(iter(data)).most_common() if not table: return table # Extract the values with the highest frequency. maxfreq = table[0][1] for i in range(1, len(table)): if table[i][1] != maxfreq: table = table[:i] break return table def _find_lteq(a, x): 'Locate the leftmost value exactly equal to x' i = bisect_left(a, x) if i != len(a) and a[i] == x: return i raise ValueError def _find_rteq(a, l, x): 'Locate the rightmost value exactly equal to x' i = bisect_right(a, x, lo=l) if i != (len(a)+1) and a[i-1] == x: return i-1 raise ValueError def _fail_neg(values, errmsg='negative value'): """Iterate over values, failing if any are less than zero.""" for x in values: if x < 0: raise StatisticsError(errmsg) yield x # === Measures of central tendency (averages) === def mean(data): """Return the sample arithmetic mean of data. >>> mean([1, 2, 3, 4, 4]) 2.8 >>> from fractions import Fraction as F >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) Fraction(13, 21) >>> from decimal import Decimal as D >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) Decimal('0.5625') If ``data`` is empty, StatisticsError will be raised. """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('mean requires at least one data point') T, total, count = _sum(data) assert count == n return _convert(total/n, T) def harmonic_mean(data): """Return the harmonic mean of data. The harmonic mean, sometimes called the subcontrary mean, is the reciprocal of the arithmetic mean of the reciprocals of the data, and is often appropriate when averaging quantities which are rates or ratios, for example speeds. Example: Suppose an investor purchases an equal value of shares in each of three companies, with P/E (price/earning) ratios of 2.5, 3 and 10. What is the average P/E ratio for the investor's portfolio? >>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio. 3.6 Using the arithmetic mean would give an average of about 5.167, which is too high. If ``data`` is empty, or any element is less than zero, ``harmonic_mean`` will raise ``StatisticsError``. """ # For a justification for using harmonic mean for P/E ratios, see # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/ # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087 if iter(data) is data: data = list(data) errmsg = 'harmonic mean does not support negative values' n = len(data) if n < 1: raise StatisticsError('harmonic_mean requires at least one data point') elif n == 1: x = data[0] if isinstance(x, (numbers.Real, Decimal)): if x < 0: raise StatisticsError(errmsg) return x else: raise TypeError('unsupported type') try: T, total, count = _sum(1/x for x in _fail_neg(data, errmsg)) except ZeroDivisionError: return 0 assert count == n return _convert(n/total, T) # FIXME: investigate ways to calculate medians without sorting? Quickselect? def median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: i = n//2 return (data[i - 1] + data[i])/2 def median_low(data): """Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. >>> median_low([1, 3, 5]) 3 >>> median_low([1, 3, 5, 7]) 3 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: return data[n//2 - 1] def median_high(data): """Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. >>> median_high([1, 3, 5]) 3 >>> median_high([1, 3, 5, 7]) 5 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") return data[n//2] def median_grouped(data, interval=1): """Return the 50th percentile (median) of grouped continuous data. >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) 3.7 >>> median_grouped([52, 52, 53, 54]) 52.5 This calculates the median as the 50th percentile, and should be used when your data is continuous and grouped. In the above example, the values 1, 2, 3, etc. actually represent the midpoint of classes 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in class 3.5-4.5, and interpolation is used to estimate it. Optional argument ``interval`` represents the class interval, and defaults to 1. Changing the class interval naturally will change the interpolated 50th percentile value: >>> median_grouped([1, 3, 3, 5, 7], interval=1) 3.25 >>> median_grouped([1, 3, 3, 5, 7], interval=2) 3.5 This function does not check whether the data points are at least ``interval`` apart. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") elif n == 1: return data[0] # Find the value at the midpoint. Remember this corresponds to the # centre of the class interval. x = data[n//2] for obj in (x, interval): if isinstance(obj, (str, bytes)): raise TypeError('expected number but got %r' % obj) try: L = x - interval/2 # The lower limit of the median interval. except TypeError: # Mixed type. For now we just coerce to float. L = float(x) - float(interval)/2 # Uses bisection search to search for x in data with log(n) time complexity # Find the position of leftmost occurrence of x in data l1 = _find_lteq(data, x) # Find the position of rightmost occurrence of x in data[l1...len(data)] # Assuming always l1 <= l2 l2 = _find_rteq(data, l1, x) cf = l1 f = l2 - l1 + 1 return L + interval*(n/2 - cf)/f def mode(data): """Return the most common data point from discrete or nominal data. ``mode`` assumes discrete data, and returns a single value. This is the standard treatment of the mode as commonly taught in schools: >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) 3 This also works with nominal (non-numeric) data: >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) 'red' If there is not exactly one most common value, ``mode`` will raise StatisticsError. """ # Generate a table of sorted (value, frequency) pairs. table = _counts(data) if len(table) == 1: return table[0][0] elif table: raise StatisticsError( 'no unique mode; found %d equally common values' % len(table) ) else: raise StatisticsError('no mode for empty data') # === Measures of spread === # See http://mathworld.wolfram.com/Variance.html # http://mathworld.wolfram.com/SampleVariance.html # http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance # # Under no circumstances use the so-called "computational formula for # variance", as that is only suitable for hand calculations with a small # amount of low-precision data. It has terrible numeric properties. # # See a comparison of three computational methods here: # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/ def _ss(data, c=None): """Return sum of square deviations of sequence data. If ``c`` is None, the mean is calculated in one pass, and the deviations from the mean are calculated in a second pass. Otherwise, deviations are calculated from ``c`` as given. Use the second case with care, as it can lead to garbage results. """ if c is None: c = mean(data) T, total, count = _sum((x-c)**2 for x in data) # The following sum should mathematically equal zero, but due to rounding # error may not. U, total2, count2 = _sum((x-c) for x in data) assert T == U and count == count2 total -= total2**2/len(data) assert not total < 0, 'negative sum of square deviations: %f' % total return (T, total) def variance(data, xbar=None): """Return the sample variance of data. data should be an iterable of Real-valued numbers, with at least two values. The optional argument xbar, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function when your data is a sample from a population. To calculate the variance from the entire population, see ``pvariance``. Examples: >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] >>> variance(data) 1.3720238095238095 If you have already calculated the mean of your data, you can pass it as the optional second argument ``xbar`` to avoid recalculating it: >>> m = mean(data) >>> variance(data, m) 1.3720238095238095 This function does not check that ``xbar`` is actually the mean of ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('31.01875') >>> from fractions import Fraction as F >>> variance([F(1, 6), F(1, 2), F(5, 3)]) Fraction(67, 108) """ if iter(data) is data: data = list(data) n = len(data) if n < 2: raise StatisticsError('variance requires at least two data points') T, ss = _ss(data, xbar) return _convert(ss/(n-1), T) def pvariance(data, mu=None): """Return the population variance of ``data``. data should be an iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. Examples: >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] >>> pvariance(data) 1.25 If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: >>> mu = mean(data) >>> pvariance(data, mu) 1.25 This function does not check that ``mu`` is actually the mean of ``data``. Giving arbitrary values for ``mu`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('24.815') >>> from fractions import Fraction as F >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) Fraction(13, 72) """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('pvariance requires at least one data point') T, ss = _ss(data, mu) return _convert(ss/n, T) def stdev(data, xbar=None): """Return the square root of the sample variance. See ``variance`` for arguments and other details. >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 1.0810874155219827 """ var = variance(data, xbar) try: return var.sqrt() except AttributeError: return math.sqrt(var) def pstdev(data, mu=None): """Return the square root of the population variance. See ``pvariance`` for arguments and other details. >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 0.986893273527251 """ var = pvariance(data, mu) try: return var.sqrt() except AttributeError: return math.sqrt(var)
SILENT KILLER Tool