SILENT KILLERPanel

Current Path: > > opt > alt > > python35 > lib64 > python3.5 > >


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/alt//python35/lib64/python3.5//

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.5m Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
idlelib Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
plat-linux Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
test Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
__future__.py File 4841 bytes May 31 2024 13:51:46.
__phello__.foo.py File 64 bytes May 31 2024 13:51:44.
_bootlocale.py File 1301 bytes May 31 2024 13:51:40.
_collections_abc.py File 24794 bytes May 31 2024 13:51:40.
_compat_pickle.py File 8556 bytes May 31 2024 13:51:43.
_compression.py File 5340 bytes May 31 2024 13:51:41.
_dummy_thread.py File 5118 bytes May 31 2024 13:51:44.
_markupbase.py File 14598 bytes May 31 2024 13:51:40.
_osx_support.py File 19115 bytes May 31 2024 13:51:44.
_pydecimal.py File 228628 bytes May 31 2024 13:51:40.
_pyio.py File 87968 bytes May 31 2024 13:51:41.
_sitebuiltins.py File 3115 bytes May 31 2024 13:51:41.
_strptime.py File 22185 bytes May 31 2024 13:51:45.
_sysconfigdata.py File 26951 bytes May 31 2024 13:51:44.
_threading_local.py File 7410 bytes May 31 2024 13:51:40.
_weakrefset.py File 5705 bytes May 31 2024 13:51:40.
abc.py File 8628 bytes May 31 2024 13:51:40.
aifc.py File 31967 bytes May 31 2024 13:51:45.
antigravity.py File 476 bytes May 31 2024 13:51:40.
argparse.py File 90138 bytes May 31 2024 13:51:44.
ast.py File 12001 bytes May 31 2024 13:51:44.
asynchat.py File 11971 bytes May 31 2024 13:51:44.
asyncore.py File 20104 bytes May 31 2024 13:51:46.
base64.py File 20522 bytes May 31 2024 13:51:40.
bdb.py File 23354 bytes May 31 2024 13:51:43.
binhex.py File 13954 bytes May 31 2024 13:51:40.
bisect.py File 2595 bytes May 31 2024 13:51:40.
bz2.py File 12424 bytes May 31 2024 13:51:44.
cProfile.py File 5324 bytes May 31 2024 13:51:40.
calendar.py File 22998 bytes May 31 2024 13:51:44.
cgi.py File 36046 bytes May 31 2024 13:51:44.
cgitb.py File 12023 bytes May 31 2024 13:51:46.
chunk.py File 5425 bytes May 31 2024 13:51:41.
cmd.py File 14860 bytes May 31 2024 13:51:40.
code.py File 10118 bytes May 31 2024 13:51:40.
codecs.py File 36231 bytes May 31 2024 13:51:40.
codeop.py File 5994 bytes May 31 2024 13:51:40.
colorsys.py File 4064 bytes May 31 2024 13:51:40.
compileall.py File 11711 bytes May 31 2024 13:51:40.
configparser.py File 53452 bytes May 31 2024 13:51:40.
contextlib.py File 12451 bytes May 31 2024 13:51:40.
copy.py File 8946 bytes May 31 2024 13:51:40.
copyreg.py File 6833 bytes May 31 2024 13:51:44.
crypt.py File 1879 bytes May 31 2024 13:51:40.
csv.py File 16128 bytes May 31 2024 13:51:40.
datetime.py File 75899 bytes May 31 2024 13:51:46.
decimal.py File 320 bytes May 31 2024 13:51:44.
difflib.py File 84204 bytes May 31 2024 13:51:41.
dis.py File 17350 bytes May 31 2024 13:51:40.
doctest.py File 104036 bytes May 31 2024 13:51:40.
dummy_threading.py File 2815 bytes May 31 2024 13:51:40.
enum.py File 22226 bytes May 31 2024 13:51:40.
filecmp.py File 9830 bytes May 31 2024 13:51:40.
fileinput.py File 14259 bytes May 31 2024 13:51:41.
fnmatch.py File 3163 bytes May 31 2024 13:51:40.
formatter.py File 15143 bytes May 31 2024 13:51:40.
fractions.py File 24612 bytes May 31 2024 13:51:40.
ftplib.py File 34951 bytes May 31 2024 13:51:40.
functools.py File 28944 bytes May 31 2024 13:51:46.
genericpath.py File 4364 bytes May 31 2024 13:51:46.
getopt.py File 7489 bytes May 31 2024 13:51:44.
getpass.py File 5994 bytes May 31 2024 13:51:40.
gettext.py File 21530 bytes May 31 2024 13:51:44.
glob.py File 5072 bytes May 31 2024 13:51:40.
gzip.py File 20260 bytes May 31 2024 13:51:44.
hashlib.py File 7979 bytes May 31 2024 13:51:46.
heapq.py File 22929 bytes May 31 2024 13:51:40.
hmac.py File 5063 bytes May 31 2024 13:51:41.
imaplib.py File 52183 bytes May 31 2024 13:51:44.
imghdr.py File 3758 bytes May 31 2024 13:51:44.
imp.py File 10676 bytes May 31 2024 13:51:40.
inspect.py File 114199 bytes May 31 2024 13:51:43.
io.py File 3396 bytes May 31 2024 13:51:40.
ipaddress.py File 75733 bytes May 31 2024 13:51:44.
keyword.py File 2222 bytes May 31 2024 13:51:44.
linecache.py File 5312 bytes May 31 2024 13:51:40.
locale.py File 74713 bytes May 31 2024 13:51:44.
lzma.py File 12925 bytes May 31 2024 13:51:45.
macpath.py File 5907 bytes May 31 2024 13:51:40.
macurl2path.py File 2732 bytes May 31 2024 13:51:40.
mailbox.py File 78418 bytes May 31 2024 13:51:43.
mailcap.py File 8104 bytes May 31 2024 13:51:40.
mimetypes.py File 20847 bytes May 31 2024 13:51:44.
modulefinder.py File 23085 bytes May 31 2024 13:51:40.
netrc.py File 5748 bytes May 31 2024 13:51:41.
nntplib.py File 43078 bytes May 31 2024 13:51:40.
ntpath.py File 22793 bytes May 31 2024 13:51:40.
nturl2path.py File 2444 bytes May 31 2024 13:51:44.
numbers.py File 10243 bytes May 31 2024 13:51:45.
opcode.py File 5885 bytes May 31 2024 13:51:46.
operator.py File 10863 bytes May 31 2024 13:51:44.
optparse.py File 60344 bytes May 31 2024 13:51:44.
os.py File 37033 bytes May 31 2024 13:51:40.
pathlib.py File 47001 bytes May 31 2024 13:51:44.
pdb.py File 61149 bytes May 31 2024 13:51:40.
pickle.py File 56176 bytes May 31 2024 13:51:41.
pickletools.py File 91761 bytes May 31 2024 13:51:40.
pipes.py File 8916 bytes May 31 2024 13:51:44.
pkgutil.py File 21355 bytes May 31 2024 13:51:40.
platform.py File 46147 bytes May 31 2024 13:51:40.
plistlib.py File 31810 bytes May 31 2024 13:51:40.
poplib.py File 14717 bytes May 31 2024 13:51:40.
posixpath.py File 14911 bytes May 31 2024 13:51:40.
pprint.py File 20860 bytes May 31 2024 13:51:40.
profile.py File 22032 bytes May 31 2024 13:51:41.
pstats.py File 26564 bytes May 31 2024 13:51:40.
pty.py File 4763 bytes May 31 2024 13:51:40.
py_compile.py File 7181 bytes May 31 2024 13:51:44.
pyclbr.py File 13564 bytes May 31 2024 13:51:39.
pydoc.py File 103652 bytes May 31 2024 13:51:40.
queue.py File 8780 bytes May 31 2024 13:51:44.
quopri.py File 7265 bytes May 31 2024 13:51:44.
random.py File 26463 bytes May 31 2024 13:51:40.
re.py File 15501 bytes May 31 2024 13:51:40.
reprlib.py File 5336 bytes May 31 2024 13:51:40.
rlcompleter.py File 6307 bytes May 31 2024 13:51:46.
runpy.py File 11959 bytes May 31 2024 13:51:40.
sched.py File 6216 bytes May 31 2024 13:51:44.
selectors.py File 19438 bytes May 31 2024 13:51:40.
shelve.py File 8528 bytes May 31 2024 13:51:44.
shlex.py File 11448 bytes May 31 2024 13:51:46.
shutil.py File 40048 bytes May 31 2024 13:51:44.
signal.py File 2123 bytes May 31 2024 13:51:44.
site.py File 21509 bytes May 31 2024 13:51:43.
smtpd.py File 35373 bytes May 31 2024 13:51:40.
smtplib.py File 43635 bytes May 31 2024 13:51:40.
sndhdr.py File 6418 bytes May 31 2024 13:51:44.
socket.py File 27135 bytes May 31 2024 13:51:45.
socketserver.py File 24666 bytes May 31 2024 13:51:46.
sre_compile.py File 18410 bytes May 31 2024 13:51:40.
sre_constants.py File 6821 bytes May 31 2024 13:51:40.
sre_parse.py File 35117 bytes May 31 2024 13:51:40.
ssl.py File 42352 bytes May 31 2024 13:51:44.
stat.py File 5038 bytes May 31 2024 13:51:44.
statistics.py File 19533 bytes May 31 2024 13:51:40.
string.py File 11854 bytes May 31 2024 13:51:44.
stringprep.py File 12917 bytes May 31 2024 13:51:41.
struct.py File 257 bytes May 31 2024 13:51:40.
subprocess.py File 58912 bytes May 31 2024 13:51:40.
sunau.py File 18095 bytes May 31 2024 13:51:40.
symbol.py File 2106 bytes May 31 2024 13:51:40.
symtable.py File 7191 bytes May 31 2024 13:51:44.
sysconfig.py File 24462 bytes May 31 2024 13:51:44.
tabnanny.py File 11414 bytes May 31 2024 13:51:44.
tarfile.py File 93070 bytes May 31 2024 13:51:40.
telnetlib.py File 23016 bytes May 31 2024 13:51:40.
tempfile.py File 26636 bytes May 31 2024 13:51:40.
textwrap.py File 19558 bytes May 31 2024 13:51:40.
this.py File 1003 bytes May 31 2024 13:51:41.
threading.py File 49027 bytes May 31 2024 13:51:44.
timeit.py File 12403 bytes May 31 2024 13:51:40.
token.py File 3075 bytes May 31 2024 13:51:40.
tokenize.py File 27790 bytes May 31 2024 13:51:44.
trace.py File 31553 bytes May 31 2024 13:51:40.
traceback.py File 22175 bytes May 31 2024 13:51:44.
tracemalloc.py File 15641 bytes May 31 2024 13:51:44.
tty.py File 879 bytes May 31 2024 13:51:40.
types.py File 8799 bytes May 31 2024 13:51:40.
typing.py File 80135 bytes May 31 2024 13:51:44.
uu.py File 6766 bytes May 31 2024 13:51:40.
uuid.py File 23261 bytes May 31 2024 13:51:40.
warnings.py File 15850 bytes May 31 2024 13:51:40.
wave.py File 17682 bytes May 31 2024 13:51:40.
weakref.py File 20466 bytes May 31 2024 13:51:44.
webbrowser.py File 21828 bytes May 31 2024 13:51:44.
xdrlib.py File 5913 bytes May 31 2024 13:51:46.
zipapp.py File 7157 bytes May 31 2024 13:51:40.
zipfile.py File 73672 bytes May 31 2024 13:51:46.

Reading File: //opt/alt//python35/lib64/python3.5///fractions.py

# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.

"""Fraction, infinite-precision, real numbers."""

from decimal import Decimal
import math
import numbers
import operator
import re
import sys

__all__ = ['Fraction', 'gcd']



def gcd(a, b):
    """Calculate the Greatest Common Divisor of a and b.

    Unless b==0, the result will have the same sign as b (so that when
    b is divided by it, the result comes out positive).
    """
    import warnings
    warnings.warn('fractions.gcd() is deprecated. Use math.gcd() instead.',
                  DeprecationWarning, 2)
    if type(a) is int is type(b):
        if (b or a) < 0:
            return -math.gcd(a, b)
        return math.gcd(a, b)
    return _gcd(a, b)

def _gcd(a, b):
    # Supports non-integers for backward compatibility.
    while b:
        a, b = b, a%b
    return a

# Constants related to the hash implementation;  hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
# Value to be used for rationals that reduce to infinity modulo
# _PyHASH_MODULUS.
_PyHASH_INF = sys.hash_info.inf

_RATIONAL_FORMAT = re.compile(r"""
    \A\s*                      # optional whitespace at the start, then
    (?P<sign>[-+]?)            # an optional sign, then
    (?=\d|\.\d)                # lookahead for digit or .digit
    (?P<num>\d*)               # numerator (possibly empty)
    (?:                        # followed by
       (?:/(?P<denom>\d+))?    # an optional denominator
    |                          # or
       (?:\.(?P<decimal>\d*))? # an optional fractional part
       (?:E(?P<exp>[-+]?\d+))? # and optional exponent
    )
    \s*\Z                      # and optional whitespace to finish
""", re.VERBOSE | re.IGNORECASE)


class Fraction(numbers.Rational):
    """This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    """

    __slots__ = ('_numerator', '_denominator')

    # We're immutable, so use __new__ not __init__
    def __new__(cls, numerator=0, denominator=None, _normalize=True):
        """Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        """
        self = super(Fraction, cls).__new__(cls)

        if denominator is None:
            if type(numerator) is int:
                self._numerator = numerator
                self._denominator = 1
                return self

            elif isinstance(numerator, numbers.Rational):
                self._numerator = numerator.numerator
                self._denominator = numerator.denominator
                return self

            elif isinstance(numerator, float):
                # Exact conversion from float
                value = Fraction.from_float(numerator)
                self._numerator = value._numerator
                self._denominator = value._denominator
                return self

            elif isinstance(numerator, Decimal):
                value = Fraction.from_decimal(numerator)
                self._numerator = value._numerator
                self._denominator = value._denominator
                return self

            elif isinstance(numerator, str):
                # Handle construction from strings.
                m = _RATIONAL_FORMAT.match(numerator)
                if m is None:
                    raise ValueError('Invalid literal for Fraction: %r' %
                                     numerator)
                numerator = int(m.group('num') or '0')
                denom = m.group('denom')
                if denom:
                    denominator = int(denom)
                else:
                    denominator = 1
                    decimal = m.group('decimal')
                    if decimal:
                        scale = 10**len(decimal)
                        numerator = numerator * scale + int(decimal)
                        denominator *= scale
                    exp = m.group('exp')
                    if exp:
                        exp = int(exp)
                        if exp >= 0:
                            numerator *= 10**exp
                        else:
                            denominator *= 10**-exp
                if m.group('sign') == '-':
                    numerator = -numerator

            else:
                raise TypeError("argument should be a string "
                                "or a Rational instance")

        elif type(numerator) is int is type(denominator):
            pass # *very* normal case

        elif (isinstance(numerator, numbers.Rational) and
            isinstance(denominator, numbers.Rational)):
            numerator, denominator = (
                numerator.numerator * denominator.denominator,
                denominator.numerator * numerator.denominator
                )
        else:
            raise TypeError("both arguments should be "
                            "Rational instances")

        if denominator == 0:
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
        if _normalize:
            if type(numerator) is int is type(denominator):
                # *very* normal case
                g = math.gcd(numerator, denominator)
                if denominator < 0:
                    g = -g
            else:
                g = _gcd(numerator, denominator)
            numerator //= g
            denominator //= g
        self._numerator = numerator
        self._denominator = denominator
        return self

    @classmethod
    def from_float(cls, f):
        """Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        """
        if isinstance(f, numbers.Integral):
            return cls(f)
        elif not isinstance(f, float):
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
                            (cls.__name__, f, type(f).__name__))
        if math.isnan(f):
            raise ValueError("Cannot convert %r to %s." % (f, cls.__name__))
        if math.isinf(f):
            raise OverflowError("Cannot convert %r to %s." % (f, cls.__name__))
        return cls(*f.as_integer_ratio())

    @classmethod
    def from_decimal(cls, dec):
        """Converts a finite Decimal instance to a rational number, exactly."""
        from decimal import Decimal
        if isinstance(dec, numbers.Integral):
            dec = Decimal(int(dec))
        elif not isinstance(dec, Decimal):
            raise TypeError(
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
                (cls.__name__, dec, type(dec).__name__))
        if dec.is_infinite():
            raise OverflowError(
                "Cannot convert %s to %s." % (dec, cls.__name__))
        if dec.is_nan():
            raise ValueError("Cannot convert %s to %s." % (dec, cls.__name__))
        sign, digits, exp = dec.as_tuple()
        digits = int(''.join(map(str, digits)))
        if sign:
            digits = -digits
        if exp >= 0:
            return cls(digits * 10 ** exp)
        else:
            return cls(digits, 10 ** -exp)

    def limit_denominator(self, max_denominator=1000000):
        """Closest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        """
        # Algorithm notes: For any real number x, define a *best upper
        # approximation* to x to be a rational number p/q such that:
        #
        #   (1) p/q >= x, and
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
        #
        # Define *best lower approximation* similarly.  Then it can be
        # proved that a rational number is a best upper or lower
        # approximation to x if, and only if, it is a convergent or
        # semiconvergent of the (unique shortest) continued fraction
        # associated to x.
        #
        # To find a best rational approximation with denominator <= M,
        # we find the best upper and lower approximations with
        # denominator <= M and take whichever of these is closer to x.
        # In the event of a tie, the bound with smaller denominator is
        # chosen.  If both denominators are equal (which can happen
        # only when max_denominator == 1 and self is midway between
        # two integers) the lower bound---i.e., the floor of self, is
        # taken.

        if max_denominator < 1:
            raise ValueError("max_denominator should be at least 1")
        if self._denominator <= max_denominator:
            return Fraction(self)

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = self._numerator, self._denominator
        while True:
            a = n//d
            q2 = q0+a*q1
            if q2 > max_denominator:
                break
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
            n, d = d, n-a*d

        k = (max_denominator-q0)//q1
        bound1 = Fraction(p0+k*p1, q0+k*q1)
        bound2 = Fraction(p1, q1)
        if abs(bound2 - self) <= abs(bound1-self):
            return bound2
        else:
            return bound1

    @property
    def numerator(a):
        return a._numerator

    @property
    def denominator(a):
        return a._denominator

    def __repr__(self):
        """repr(self)"""
        return '%s(%s, %s)' % (self.__class__.__name__,
                               self._numerator, self._denominator)

    def __str__(self):
        """str(self)"""
        if self._denominator == 1:
            return str(self._numerator)
        else:
            return '%s/%s' % (self._numerator, self._denominator)

    def _operator_fallbacks(monomorphic_operator, fallback_operator):
        """Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        """
        def forward(a, b):
            if isinstance(b, (int, Fraction)):
                return monomorphic_operator(a, b)
            elif isinstance(b, float):
                return fallback_operator(float(a), b)
            elif isinstance(b, complex):
                return fallback_operator(complex(a), b)
            else:
                return NotImplemented
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
        forward.__doc__ = monomorphic_operator.__doc__

        def reverse(b, a):
            if isinstance(a, numbers.Rational):
                # Includes ints.
                return monomorphic_operator(a, b)
            elif isinstance(a, numbers.Real):
                return fallback_operator(float(a), float(b))
            elif isinstance(a, numbers.Complex):
                return fallback_operator(complex(a), complex(b))
            else:
                return NotImplemented
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
        reverse.__doc__ = monomorphic_operator.__doc__

        return forward, reverse

    def _add(a, b):
        """a + b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db + b.numerator * da,
                        da * db)

    __add__, __radd__ = _operator_fallbacks(_add, operator.add)

    def _sub(a, b):
        """a - b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db - b.numerator * da,
                        da * db)

    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)

    def _mul(a, b):
        """a * b"""
        return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)

    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)

    def _div(a, b):
        """a / b"""
        return Fraction(a.numerator * b.denominator,
                        a.denominator * b.numerator)

    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)

    def __floordiv__(a, b):
        """a // b"""
        return math.floor(a / b)

    def __rfloordiv__(b, a):
        """a // b"""
        return math.floor(a / b)

    def __mod__(a, b):
        """a % b"""
        div = a // b
        return a - b * div

    def __rmod__(b, a):
        """a % b"""
        div = a // b
        return a - b * div

    def __pow__(a, b):
        """a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        """
        if isinstance(b, numbers.Rational):
            if b.denominator == 1:
                power = b.numerator
                if power >= 0:
                    return Fraction(a._numerator ** power,
                                    a._denominator ** power,
                                    _normalize=False)
                elif a._numerator >= 0:
                    return Fraction(a._denominator ** -power,
                                    a._numerator ** -power,
                                    _normalize=False)
                else:
                    return Fraction((-a._denominator) ** -power,
                                    (-a._numerator) ** -power,
                                    _normalize=False)
            else:
                # A fractional power will generally produce an
                # irrational number.
                return float(a) ** float(b)
        else:
            return float(a) ** b

    def __rpow__(b, a):
        """a ** b"""
        if b._denominator == 1 and b._numerator >= 0:
            # If a is an int, keep it that way if possible.
            return a ** b._numerator

        if isinstance(a, numbers.Rational):
            return Fraction(a.numerator, a.denominator) ** b

        if b._denominator == 1:
            return a ** b._numerator

        return a ** float(b)

    def __pos__(a):
        """+a: Coerces a subclass instance to Fraction"""
        return Fraction(a._numerator, a._denominator, _normalize=False)

    def __neg__(a):
        """-a"""
        return Fraction(-a._numerator, a._denominator, _normalize=False)

    def __abs__(a):
        """abs(a)"""
        return Fraction(abs(a._numerator), a._denominator, _normalize=False)

    def __trunc__(a):
        """trunc(a)"""
        if a._numerator < 0:
            return -(-a._numerator // a._denominator)
        else:
            return a._numerator // a._denominator

    def __floor__(a):
        """Will be math.floor(a) in 3.0."""
        return a.numerator // a.denominator

    def __ceil__(a):
        """Will be math.ceil(a) in 3.0."""
        # The negations cleverly convince floordiv to return the ceiling.
        return -(-a.numerator // a.denominator)

    def __round__(self, ndigits=None):
        """Will be round(self, ndigits) in 3.0.

        Rounds half toward even.
        """
        if ndigits is None:
            floor, remainder = divmod(self.numerator, self.denominator)
            if remainder * 2 < self.denominator:
                return floor
            elif remainder * 2 > self.denominator:
                return floor + 1
            # Deal with the half case:
            elif floor % 2 == 0:
                return floor
            else:
                return floor + 1
        shift = 10**abs(ndigits)
        # See _operator_fallbacks.forward to check that the results of
        # these operations will always be Fraction and therefore have
        # round().
        if ndigits > 0:
            return Fraction(round(self * shift), shift)
        else:
            return Fraction(round(self / shift) * shift)

    def __hash__(self):
        """hash(self)"""

        # XXX since this method is expensive, consider caching the result

        # In order to make sure that the hash of a Fraction agrees
        # with the hash of a numerically equal integer, float or
        # Decimal instance, we follow the rules for numeric hashes
        # outlined in the documentation.  (See library docs, 'Built-in
        # Types').

        # dinv is the inverse of self._denominator modulo the prime
        # _PyHASH_MODULUS, or 0 if self._denominator is divisible by
        # _PyHASH_MODULUS.
        dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
        if not dinv:
            hash_ = _PyHASH_INF
        else:
            hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS
        result = hash_ if self >= 0 else -hash_
        return -2 if result == -1 else result

    def __eq__(a, b):
        """a == b"""
        if type(b) is int:
            return a._numerator == b and a._denominator == 1
        if isinstance(b, numbers.Rational):
            return (a._numerator == b.numerator and
                    a._denominator == b.denominator)
        if isinstance(b, numbers.Complex) and b.imag == 0:
            b = b.real
        if isinstance(b, float):
            if math.isnan(b) or math.isinf(b):
                # comparisons with an infinity or nan should behave in
                # the same way for any finite a, so treat a as zero.
                return 0.0 == b
            else:
                return a == a.from_float(b)
        else:
            # Since a doesn't know how to compare with b, let's give b
            # a chance to compare itself with a.
            return NotImplemented

    def _richcmp(self, other, op):
        """Helper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        """
        # convert other to a Rational instance where reasonable.
        if isinstance(other, numbers.Rational):
            return op(self._numerator * other.denominator,
                      self._denominator * other.numerator)
        if isinstance(other, float):
            if math.isnan(other) or math.isinf(other):
                return op(0.0, other)
            else:
                return op(self, self.from_float(other))
        else:
            return NotImplemented

    def __lt__(a, b):
        """a < b"""
        return a._richcmp(b, operator.lt)

    def __gt__(a, b):
        """a > b"""
        return a._richcmp(b, operator.gt)

    def __le__(a, b):
        """a <= b"""
        return a._richcmp(b, operator.le)

    def __ge__(a, b):
        """a >= b"""
        return a._richcmp(b, operator.ge)

    def __bool__(a):
        """a != 0"""
        return a._numerator != 0

    # support for pickling, copy, and deepcopy

    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) == Fraction:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(self._numerator, self._denominator)

    def __deepcopy__(self, memo):
        if type(self) == Fraction:
            return self     # My components are also immutable
        return self.__class__(self._numerator, self._denominator)

SILENT KILLER Tool