SILENT KILLERPanel

Current Path: > > opt > alt > python310 > lib64 > python3.10 > __pycache__


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/alt/python310/lib64/python3.10/__pycache__

NameTypeSizeLast ModifiedActions
__future__.cpython-310.opt-1.pyc File 4147 bytes June 18 2025 15:55:27.
__future__.cpython-310.opt-2.pyc File 2177 bytes June 18 2025 15:55:30.
__future__.cpython-310.pyc File 4147 bytes June 18 2025 15:55:27.
__phello__.foo.cpython-310.opt-1.pyc File 146 bytes June 18 2025 15:55:26.
__phello__.foo.cpython-310.opt-2.pyc File 146 bytes June 18 2025 15:55:26.
__phello__.foo.cpython-310.pyc File 146 bytes June 18 2025 15:55:26.
_aix_support.cpython-310.opt-1.pyc File 2895 bytes June 18 2025 15:55:26.
_aix_support.cpython-310.opt-2.pyc File 1663 bytes June 18 2025 15:55:29.
_aix_support.cpython-310.pyc File 2895 bytes June 18 2025 15:55:26.
_bootsubprocess.cpython-310.opt-1.pyc File 2310 bytes June 18 2025 15:55:14.
_bootsubprocess.cpython-310.opt-2.pyc File 2085 bytes June 18 2025 15:55:21.
_bootsubprocess.cpython-310.pyc File 2310 bytes June 18 2025 15:55:14.
_collections_abc.cpython-310.opt-1.pyc File 32941 bytes June 18 2025 15:55:14.
_collections_abc.cpython-310.opt-2.pyc File 26856 bytes June 18 2025 15:55:21.
_collections_abc.cpython-310.pyc File 32941 bytes June 18 2025 15:55:14.
_compat_pickle.cpython-310.opt-1.pyc File 5835 bytes June 18 2025 15:55:28.
_compat_pickle.cpython-310.opt-2.pyc File 5835 bytes June 18 2025 15:55:28.
_compat_pickle.cpython-310.pyc File 5888 bytes June 18 2025 15:55:26.
_compression.cpython-310.opt-1.pyc File 4528 bytes June 18 2025 15:55:14.
_compression.cpython-310.opt-2.pyc File 4330 bytes June 18 2025 15:55:22.
_compression.cpython-310.pyc File 4528 bytes June 18 2025 15:55:14.
_markupbase.cpython-310.opt-1.pyc File 7441 bytes June 18 2025 15:55:18.
_markupbase.cpython-310.opt-2.pyc File 7075 bytes June 18 2025 15:55:21.
_markupbase.cpython-310.pyc File 7588 bytes June 18 2025 15:55:14.
_osx_support.cpython-310.opt-1.pyc File 11551 bytes June 18 2025 15:55:26.
_osx_support.cpython-310.opt-2.pyc File 8941 bytes June 18 2025 15:55:29.
_osx_support.cpython-310.pyc File 11551 bytes June 18 2025 15:55:26.
_py_abc.cpython-310.opt-1.pyc File 4677 bytes June 18 2025 15:55:28.
_py_abc.cpython-310.opt-2.pyc File 3496 bytes June 18 2025 15:55:29.
_py_abc.cpython-310.pyc File 4699 bytes June 18 2025 15:55:27.
_pydecimal.cpython-310.opt-1.pyc File 157752 bytes June 18 2025 15:55:17.
_pydecimal.cpython-310.opt-2.pyc File 76861 bytes June 18 2025 15:55:21.
_pydecimal.cpython-310.pyc File 157752 bytes June 18 2025 15:55:14.
_pyio.cpython-310.opt-1.pyc File 73652 bytes June 18 2025 15:55:18.
_pyio.cpython-310.opt-2.pyc File 50959 bytes June 18 2025 15:55:22.
_pyio.cpython-310.pyc File 73670 bytes June 18 2025 15:55:14.
_sitebuiltins.cpython-310.opt-1.pyc File 3563 bytes June 18 2025 15:55:14.
_sitebuiltins.cpython-310.opt-2.pyc File 3051 bytes June 18 2025 15:55:22.
_sitebuiltins.cpython-310.pyc File 3563 bytes June 18 2025 15:55:14.
_strptime.cpython-310.opt-1.pyc File 15961 bytes June 18 2025 15:55:27.
_strptime.cpython-310.opt-2.pyc File 12286 bytes June 18 2025 15:55:29.
_strptime.cpython-310.pyc File 15961 bytes June 18 2025 15:55:27.
_sysconfigdata__linux_x86_64-linux-gnu.cpython-310.opt-1.pyc File 44993 bytes June 18 2025 15:55:26.
_sysconfigdata__linux_x86_64-linux-gnu.cpython-310.opt-2.pyc File 44993 bytes June 18 2025 15:55:26.
_sysconfigdata__linux_x86_64-linux-gnu.cpython-310.pyc File 44993 bytes June 18 2025 15:55:26.
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-310.opt-1.pyc File 44577 bytes June 18 2025 15:55:13.
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-310.opt-2.pyc File 44577 bytes June 18 2025 15:55:13.
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-310.pyc File 44577 bytes June 18 2025 15:55:13.
_threading_local.cpython-310.opt-1.pyc File 6555 bytes June 18 2025 15:55:14.
_threading_local.cpython-310.opt-2.pyc File 3253 bytes June 18 2025 15:55:21.
_threading_local.cpython-310.pyc File 6555 bytes June 18 2025 15:55:14.
_weakrefset.cpython-310.opt-1.pyc File 7624 bytes June 18 2025 15:55:14.
_weakrefset.cpython-310.opt-2.pyc File 7624 bytes June 18 2025 15:55:14.
_weakrefset.cpython-310.pyc File 7624 bytes June 18 2025 15:55:14.
abc.cpython-310.opt-1.pyc File 6767 bytes June 18 2025 15:55:14.
abc.cpython-310.opt-2.pyc File 3586 bytes June 18 2025 15:55:21.
abc.cpython-310.pyc File 6767 bytes June 18 2025 15:55:14.
aifc.cpython-310.opt-1.pyc File 24701 bytes June 18 2025 15:55:27.
aifc.cpython-310.opt-2.pyc File 19500 bytes June 18 2025 15:55:30.
aifc.cpython-310.pyc File 24701 bytes June 18 2025 15:55:27.
antigravity.cpython-310.opt-1.pyc File 838 bytes June 18 2025 15:55:14.
antigravity.cpython-310.opt-2.pyc File 698 bytes June 18 2025 15:55:21.
antigravity.cpython-310.pyc File 838 bytes June 18 2025 15:55:14.
argparse.cpython-310.opt-1.pyc File 63131 bytes June 18 2025 15:55:28.
argparse.cpython-310.opt-2.pyc File 53801 bytes June 18 2025 15:55:29.
argparse.cpython-310.pyc File 63242 bytes June 18 2025 15:55:26.
ast.cpython-310.opt-1.pyc File 55704 bytes June 18 2025 15:55:28.
ast.cpython-310.opt-2.pyc File 47345 bytes June 18 2025 15:55:29.
ast.cpython-310.pyc File 55755 bytes June 18 2025 15:55:26.
asynchat.cpython-310.opt-1.pyc File 7041 bytes June 18 2025 15:55:26.
asynchat.cpython-310.opt-2.pyc File 5690 bytes June 18 2025 15:55:29.
asynchat.cpython-310.pyc File 7041 bytes June 18 2025 15:55:26.
asyncore.cpython-310.opt-1.pyc File 16018 bytes June 18 2025 15:55:27.
asyncore.cpython-310.opt-2.pyc File 14818 bytes June 18 2025 15:55:30.
asyncore.cpython-310.pyc File 16018 bytes June 18 2025 15:55:27.
base64.cpython-310.opt-1.pyc File 17046 bytes June 18 2025 15:55:18.
base64.cpython-310.opt-2.pyc File 12545 bytes June 18 2025 15:55:21.
base64.cpython-310.pyc File 17178 bytes June 18 2025 15:55:14.
bdb.cpython-310.opt-1.pyc File 25848 bytes June 18 2025 15:55:26.
bdb.cpython-310.opt-2.pyc File 16382 bytes June 18 2025 15:55:29.
bdb.cpython-310.pyc File 25848 bytes June 18 2025 15:55:26.
binhex.cpython-310.opt-1.pyc File 12886 bytes June 18 2025 15:55:14.
binhex.cpython-310.opt-2.pyc File 12388 bytes June 18 2025 15:55:21.
binhex.cpython-310.pyc File 12886 bytes June 18 2025 15:55:14.
bisect.cpython-310.opt-1.pyc File 2604 bytes June 18 2025 15:55:13.
bisect.cpython-310.opt-2.pyc File 1299 bytes June 18 2025 15:55:21.
bisect.cpython-310.pyc File 2604 bytes June 18 2025 15:55:13.
bz2.cpython-310.opt-1.pyc File 10886 bytes June 18 2025 15:55:26.
bz2.cpython-310.opt-2.pyc File 5954 bytes June 18 2025 15:55:29.
bz2.cpython-310.pyc File 10886 bytes June 18 2025 15:55:26.
cProfile.cpython-310.opt-1.pyc File 5129 bytes June 18 2025 15:55:14.
cProfile.cpython-310.opt-2.pyc File 4676 bytes June 18 2025 15:55:21.
cProfile.cpython-310.pyc File 5129 bytes June 18 2025 15:55:14.
calendar.cpython-310.opt-1.pyc File 26319 bytes June 18 2025 15:55:26.
calendar.cpython-310.opt-2.pyc File 21899 bytes June 18 2025 15:55:29.
calendar.cpython-310.pyc File 26319 bytes June 18 2025 15:55:26.
cgi.cpython-310.opt-1.pyc File 26739 bytes June 18 2025 15:55:26.
cgi.cpython-310.opt-2.pyc File 18469 bytes June 18 2025 15:55:29.
cgi.cpython-310.pyc File 26739 bytes June 18 2025 15:55:26.
cgitb.cpython-310.opt-1.pyc File 10014 bytes June 18 2025 15:55:27.
cgitb.cpython-310.opt-2.pyc File 8447 bytes June 18 2025 15:55:30.
cgitb.cpython-310.pyc File 10014 bytes June 18 2025 15:55:27.
chunk.cpython-310.opt-1.pyc File 4876 bytes June 18 2025 15:55:14.
chunk.cpython-310.opt-2.pyc File 2752 bytes June 18 2025 15:55:22.
chunk.cpython-310.pyc File 4876 bytes June 18 2025 15:55:14.
cmd.cpython-310.opt-1.pyc File 12723 bytes June 18 2025 15:55:14.
cmd.cpython-310.opt-2.pyc File 7354 bytes June 18 2025 15:55:21.
cmd.cpython-310.pyc File 12723 bytes June 18 2025 15:55:14.
code.cpython-310.opt-1.pyc File 9973 bytes June 18 2025 15:55:14.
code.cpython-310.opt-2.pyc File 4764 bytes June 18 2025 15:55:21.
code.cpython-310.pyc File 9973 bytes June 18 2025 15:55:14.
codecs.cpython-310.opt-1.pyc File 33235 bytes June 18 2025 15:55:14.
codecs.cpython-310.opt-2.pyc File 17792 bytes June 18 2025 15:55:21.
codecs.cpython-310.pyc File 33235 bytes June 18 2025 15:55:14.
codeop.cpython-310.opt-1.pyc File 5611 bytes June 18 2025 15:55:14.
codeop.cpython-310.opt-2.pyc File 2621 bytes June 18 2025 15:55:21.
codeop.cpython-310.pyc File 5611 bytes June 18 2025 15:55:14.
colorsys.cpython-310.opt-1.pyc File 3281 bytes June 18 2025 15:55:14.
colorsys.cpython-310.opt-2.pyc File 2679 bytes June 18 2025 15:55:21.
colorsys.cpython-310.pyc File 3281 bytes June 18 2025 15:55:14.
compileall.cpython-310.opt-1.pyc File 12749 bytes June 18 2025 15:55:14.
compileall.cpython-310.opt-2.pyc File 9510 bytes June 18 2025 15:55:21.
compileall.cpython-310.pyc File 12749 bytes June 18 2025 15:55:14.
configparser.cpython-310.opt-1.pyc File 45474 bytes June 18 2025 15:55:18.
configparser.cpython-310.opt-2.pyc File 30551 bytes June 18 2025 15:55:21.
configparser.cpython-310.pyc File 45474 bytes June 18 2025 15:55:14.
contextlib.cpython-310.opt-1.pyc File 20901 bytes June 18 2025 15:55:17.
contextlib.cpython-310.opt-2.pyc File 14913 bytes June 18 2025 15:55:21.
contextlib.cpython-310.pyc File 20911 bytes June 18 2025 15:55:14.
contextvars.cpython-310.opt-1.pyc File 262 bytes June 18 2025 15:55:26.
contextvars.cpython-310.opt-2.pyc File 262 bytes June 18 2025 15:55:26.
contextvars.cpython-310.pyc File 262 bytes June 18 2025 15:55:26.
copy.cpython-310.opt-1.pyc File 7012 bytes June 18 2025 15:55:14.
copy.cpython-310.opt-2.pyc File 4725 bytes June 18 2025 15:55:21.
copy.cpython-310.pyc File 7012 bytes June 18 2025 15:55:14.
copyreg.cpython-310.opt-1.pyc File 4680 bytes June 18 2025 15:55:28.
copyreg.cpython-310.opt-2.pyc File 3898 bytes June 18 2025 15:55:29.
copyreg.cpython-310.pyc File 4699 bytes June 18 2025 15:55:26.
crypt.cpython-310.opt-1.pyc File 3566 bytes June 18 2025 15:55:14.
crypt.cpython-310.opt-2.pyc File 2920 bytes June 18 2025 15:55:21.
crypt.cpython-310.pyc File 3566 bytes June 18 2025 15:55:14.
csv.cpython-310.opt-1.pyc File 11814 bytes June 18 2025 15:55:14.
csv.cpython-310.opt-2.pyc File 9813 bytes June 18 2025 15:55:21.
csv.cpython-310.pyc File 11814 bytes June 18 2025 15:55:14.
dataclasses.cpython-310.opt-1.pyc File 26578 bytes June 18 2025 15:55:28.
dataclasses.cpython-310.opt-2.pyc File 22892 bytes June 18 2025 15:55:29.
dataclasses.cpython-310.pyc File 26594 bytes June 18 2025 15:55:26.
datetime.cpython-310.opt-1.pyc File 55346 bytes June 18 2025 15:55:29.
datetime.cpython-310.opt-2.pyc File 47228 bytes June 18 2025 15:55:30.
datetime.cpython-310.pyc File 56549 bytes June 18 2025 15:55:27.
decimal.cpython-310.opt-1.pyc File 378 bytes June 18 2025 15:55:26.
decimal.cpython-310.opt-2.pyc File 378 bytes June 18 2025 15:55:26.
decimal.cpython-310.pyc File 378 bytes June 18 2025 15:55:26.
difflib.cpython-310.opt-1.pyc File 58899 bytes June 18 2025 15:55:18.
difflib.cpython-310.opt-2.pyc File 25549 bytes June 18 2025 15:55:22.
difflib.cpython-310.pyc File 58921 bytes June 18 2025 15:55:14.
dis.cpython-310.opt-1.pyc File 15672 bytes June 18 2025 15:55:14.
dis.cpython-310.opt-2.pyc File 11997 bytes June 18 2025 15:55:21.
dis.cpython-310.pyc File 15672 bytes June 18 2025 15:55:14.
doctest.cpython-310.opt-1.pyc File 75994 bytes June 18 2025 15:55:18.
doctest.cpython-310.opt-2.pyc File 40860 bytes June 18 2025 15:55:21.
doctest.cpython-310.pyc File 76191 bytes June 18 2025 15:55:14.
enum.cpython-310.opt-1.pyc File 26079 bytes June 18 2025 15:55:14.
enum.cpython-310.opt-2.pyc File 21317 bytes June 18 2025 15:55:21.
enum.cpython-310.pyc File 26079 bytes June 18 2025 15:55:14.
filecmp.cpython-310.opt-1.pyc File 8765 bytes June 18 2025 15:55:14.
filecmp.cpython-310.opt-2.pyc File 6150 bytes June 18 2025 15:55:21.
filecmp.cpython-310.pyc File 8765 bytes June 18 2025 15:55:14.
fileinput.cpython-310.opt-1.pyc File 14088 bytes June 18 2025 15:55:14.
fileinput.cpython-310.opt-2.pyc File 8603 bytes June 18 2025 15:55:22.
fileinput.cpython-310.pyc File 14088 bytes June 18 2025 15:55:14.
fnmatch.cpython-310.opt-1.pyc File 4188 bytes June 18 2025 15:55:18.
fnmatch.cpython-310.opt-2.pyc File 3000 bytes June 18 2025 15:55:21.
fnmatch.cpython-310.pyc File 4260 bytes June 18 2025 15:55:14.
fractions.cpython-310.opt-1.pyc File 18616 bytes June 18 2025 15:55:14.
fractions.cpython-310.opt-2.pyc File 11504 bytes June 18 2025 15:55:21.
fractions.cpython-310.pyc File 18616 bytes June 18 2025 15:55:14.
ftplib.cpython-310.opt-1.pyc File 28993 bytes June 18 2025 15:55:14.
ftplib.cpython-310.opt-2.pyc File 19021 bytes June 18 2025 15:55:21.
ftplib.cpython-310.pyc File 28993 bytes June 18 2025 15:55:14.
functools.cpython-310.opt-1.pyc File 28351 bytes June 18 2025 15:55:27.
functools.cpython-310.opt-2.pyc File 21727 bytes June 18 2025 15:55:30.
functools.cpython-310.pyc File 28351 bytes June 18 2025 15:55:27.
genericpath.cpython-310.opt-1.pyc File 4442 bytes June 18 2025 15:55:27.
genericpath.cpython-310.opt-2.pyc File 3297 bytes June 18 2025 15:55:30.
genericpath.cpython-310.pyc File 4442 bytes June 18 2025 15:55:27.
getopt.cpython-310.opt-1.pyc File 6337 bytes June 18 2025 15:55:28.
getopt.cpython-310.opt-2.pyc File 3795 bytes June 18 2025 15:55:29.
getopt.cpython-310.pyc File 6355 bytes June 18 2025 15:55:26.
getpass.cpython-310.opt-1.pyc File 4226 bytes June 18 2025 15:55:14.
getpass.cpython-310.opt-2.pyc File 3056 bytes June 18 2025 15:55:21.
getpass.cpython-310.pyc File 4226 bytes June 18 2025 15:55:14.
gettext.cpython-310.opt-1.pyc File 18126 bytes June 18 2025 15:55:26.
gettext.cpython-310.opt-2.pyc File 17452 bytes June 18 2025 15:55:29.
gettext.cpython-310.pyc File 18126 bytes June 18 2025 15:55:26.
glob.cpython-310.opt-1.pyc File 5839 bytes June 18 2025 15:55:17.
glob.cpython-310.opt-2.pyc File 4994 bytes June 18 2025 15:55:21.
glob.cpython-310.pyc File 5868 bytes June 18 2025 15:55:14.
graphlib.cpython-310.opt-1.pyc File 7590 bytes June 18 2025 15:55:17.
graphlib.cpython-310.opt-2.pyc File 4186 bytes June 18 2025 15:55:21.
graphlib.cpython-310.pyc File 7632 bytes June 18 2025 15:55:13.
gzip.cpython-310.opt-1.pyc File 18562 bytes June 18 2025 15:55:26.
gzip.cpython-310.opt-2.pyc File 14743 bytes June 18 2025 15:55:29.
gzip.cpython-310.pyc File 18562 bytes June 18 2025 15:55:26.
hashlib.cpython-310.opt-1.pyc File 6861 bytes June 18 2025 15:55:27.
hashlib.cpython-310.opt-2.pyc File 6306 bytes June 18 2025 15:55:30.
hashlib.cpython-310.pyc File 6861 bytes June 18 2025 15:55:27.
heapq.cpython-310.opt-1.pyc File 13881 bytes June 18 2025 15:55:13.
heapq.cpython-310.opt-2.pyc File 10913 bytes June 18 2025 15:55:21.
heapq.cpython-310.pyc File 13881 bytes June 18 2025 15:55:13.
hmac.cpython-310.opt-1.pyc File 6989 bytes June 18 2025 15:55:14.
hmac.cpython-310.opt-2.pyc File 4509 bytes June 18 2025 15:55:22.
hmac.cpython-310.pyc File 6989 bytes June 18 2025 15:55:14.
imaplib.cpython-310.opt-1.pyc File 41774 bytes June 18 2025 15:55:28.
imaplib.cpython-310.opt-2.pyc File 29313 bytes June 18 2025 15:55:29.
imaplib.cpython-310.pyc File 42516 bytes June 18 2025 15:55:26.
imghdr.cpython-310.opt-1.pyc File 3921 bytes June 18 2025 15:55:26.
imghdr.cpython-310.opt-2.pyc File 3624 bytes June 18 2025 15:55:29.
imghdr.cpython-310.pyc File 3921 bytes June 18 2025 15:55:26.
imp.cpython-310.opt-1.pyc File 9802 bytes June 18 2025 15:55:14.
imp.cpython-310.opt-2.pyc File 7507 bytes June 18 2025 15:55:21.
imp.cpython-310.pyc File 9802 bytes June 18 2025 15:55:14.
inspect.cpython-310.opt-1.pyc File 84949 bytes June 18 2025 15:55:27.
inspect.cpython-310.opt-2.pyc File 58047 bytes June 18 2025 15:55:29.
inspect.cpython-310.pyc File 85169 bytes June 18 2025 15:55:26.
io.cpython-310.opt-1.pyc File 3679 bytes June 18 2025 15:55:14.
io.cpython-310.opt-2.pyc File 2194 bytes June 18 2025 15:55:21.
io.cpython-310.pyc File 3679 bytes June 18 2025 15:55:14.
ipaddress.cpython-310.opt-1.pyc File 64530 bytes June 18 2025 15:55:26.
ipaddress.cpython-310.opt-2.pyc File 38883 bytes June 18 2025 15:55:29.
ipaddress.cpython-310.pyc File 64530 bytes June 18 2025 15:55:26.
keyword.cpython-310.opt-1.pyc File 943 bytes June 18 2025 15:55:26.
keyword.cpython-310.opt-2.pyc File 539 bytes June 18 2025 15:55:29.
keyword.cpython-310.pyc File 943 bytes June 18 2025 15:55:26.
linecache.cpython-310.opt-1.pyc File 4158 bytes June 18 2025 15:55:14.
linecache.cpython-310.opt-2.pyc File 2956 bytes June 18 2025 15:55:21.
linecache.cpython-310.pyc File 4158 bytes June 18 2025 15:55:14.
locale.cpython-310.opt-1.pyc File 46181 bytes June 18 2025 15:55:26.
locale.cpython-310.opt-2.pyc File 41700 bytes June 18 2025 15:55:29.
locale.cpython-310.pyc File 46181 bytes June 18 2025 15:55:26.
lzma.cpython-310.opt-1.pyc File 12116 bytes June 18 2025 15:55:27.
lzma.cpython-310.opt-2.pyc File 5984 bytes June 18 2025 15:55:29.
lzma.cpython-310.pyc File 12116 bytes June 18 2025 15:55:27.
mailbox.cpython-310.opt-1.pyc File 60053 bytes June 18 2025 15:55:27.
mailbox.cpython-310.opt-2.pyc File 54082 bytes June 18 2025 15:55:29.
mailbox.cpython-310.pyc File 60107 bytes June 18 2025 15:55:26.
mailcap.cpython-310.opt-1.pyc File 7336 bytes June 18 2025 15:55:17.
mailcap.cpython-310.opt-2.pyc File 5798 bytes June 18 2025 15:55:21.
mailcap.cpython-310.pyc File 7336 bytes June 18 2025 15:55:14.
mimetypes.cpython-310.opt-1.pyc File 17635 bytes June 18 2025 15:55:26.
mimetypes.cpython-310.opt-2.pyc File 11668 bytes June 18 2025 15:55:29.
mimetypes.cpython-310.pyc File 17635 bytes June 18 2025 15:55:26.
modulefinder.cpython-310.opt-1.pyc File 16138 bytes June 18 2025 15:55:17.
modulefinder.cpython-310.opt-2.pyc File 15249 bytes June 18 2025 15:55:21.
modulefinder.cpython-310.pyc File 16182 bytes June 18 2025 15:55:14.
netrc.cpython-310.opt-1.pyc File 3949 bytes June 18 2025 15:55:14.
netrc.cpython-310.opt-2.pyc File 3727 bytes June 18 2025 15:55:22.
netrc.cpython-310.pyc File 3949 bytes June 18 2025 15:55:14.
nntplib.cpython-310.opt-1.pyc File 31639 bytes June 18 2025 15:55:13.
nntplib.cpython-310.opt-2.pyc File 20246 bytes June 18 2025 15:55:21.
nntplib.cpython-310.pyc File 31639 bytes June 18 2025 15:55:13.
ntpath.cpython-310.opt-1.pyc File 15557 bytes June 18 2025 15:55:17.
ntpath.cpython-310.opt-2.pyc File 13560 bytes June 18 2025 15:55:21.
ntpath.cpython-310.pyc File 15557 bytes June 18 2025 15:55:14.
nturl2path.cpython-310.opt-1.pyc File 1763 bytes June 18 2025 15:55:26.
nturl2path.cpython-310.opt-2.pyc File 1356 bytes June 18 2025 15:55:29.
nturl2path.cpython-310.pyc File 1763 bytes June 18 2025 15:55:26.
numbers.cpython-310.opt-1.pyc File 11882 bytes June 18 2025 15:55:27.
numbers.cpython-310.opt-2.pyc File 8048 bytes June 18 2025 15:55:29.
numbers.cpython-310.pyc File 11882 bytes June 18 2025 15:55:27.
opcode.cpython-310.opt-1.pyc File 5463 bytes June 18 2025 15:55:27.
opcode.cpython-310.opt-2.pyc File 5327 bytes June 18 2025 15:55:30.
opcode.cpython-310.pyc File 5463 bytes June 18 2025 15:55:27.
operator.cpython-310.opt-1.pyc File 13524 bytes June 18 2025 15:55:26.
operator.cpython-310.opt-2.pyc File 11276 bytes June 18 2025 15:55:29.
operator.cpython-310.pyc File 13524 bytes June 18 2025 15:55:26.
optparse.cpython-310.opt-1.pyc File 47715 bytes June 18 2025 15:55:28.
optparse.cpython-310.opt-2.pyc File 35519 bytes June 18 2025 15:55:29.
optparse.cpython-310.pyc File 47770 bytes June 18 2025 15:55:26.
os.cpython-310.opt-1.pyc File 31601 bytes June 18 2025 15:55:17.
os.cpython-310.opt-2.pyc File 19456 bytes June 18 2025 15:55:21.
os.cpython-310.pyc File 31615 bytes June 18 2025 15:55:14.
pathlib.cpython-310.opt-1.pyc File 42068 bytes June 18 2025 15:55:26.
pathlib.cpython-310.opt-2.pyc File 33306 bytes June 18 2025 15:55:29.
pathlib.cpython-310.pyc File 42068 bytes June 18 2025 15:55:26.
pdb.cpython-310.opt-1.pyc File 47415 bytes June 18 2025 15:55:18.
pdb.cpython-310.opt-2.pyc File 33564 bytes June 18 2025 15:55:21.
pdb.cpython-310.pyc File 47456 bytes June 18 2025 15:55:14.
pickle.cpython-310.opt-1.pyc File 46812 bytes June 18 2025 15:55:18.
pickle.cpython-310.opt-2.pyc File 40998 bytes June 18 2025 15:55:22.
pickle.cpython-310.pyc File 46898 bytes June 18 2025 15:55:14.
pickletools.cpython-310.opt-1.pyc File 66984 bytes June 18 2025 15:55:18.
pickletools.cpython-310.opt-2.pyc File 57994 bytes June 18 2025 15:55:21.
pickletools.cpython-310.pyc File 67776 bytes June 18 2025 15:55:14.
pipes.cpython-310.opt-1.pyc File 7785 bytes June 18 2025 15:55:26.
pipes.cpython-310.opt-2.pyc File 4961 bytes June 18 2025 15:55:29.
pipes.cpython-310.pyc File 7785 bytes June 18 2025 15:55:26.
pkgutil.cpython-310.opt-1.pyc File 18377 bytes June 18 2025 15:55:14.
pkgutil.cpython-310.opt-2.pyc File 11729 bytes June 18 2025 15:55:21.
pkgutil.cpython-310.pyc File 18377 bytes June 18 2025 15:55:14.
platform.cpython-310.opt-1.pyc File 27445 bytes June 18 2025 15:55:14.
platform.cpython-310.opt-2.pyc File 19395 bytes June 18 2025 15:55:21.
platform.cpython-310.pyc File 27445 bytes June 18 2025 15:55:14.
plistlib.cpython-310.opt-1.pyc File 23521 bytes June 18 2025 15:55:17.
plistlib.cpython-310.opt-2.pyc File 21089 bytes June 18 2025 15:55:21.
plistlib.cpython-310.pyc File 23572 bytes June 18 2025 15:55:13.
poplib.cpython-310.opt-1.pyc File 13589 bytes June 18 2025 15:55:13.
poplib.cpython-310.opt-2.pyc File 8726 bytes June 18 2025 15:55:21.
poplib.cpython-310.pyc File 13589 bytes June 18 2025 15:55:13.
posixpath.cpython-310.opt-1.pyc File 10667 bytes June 18 2025 15:55:18.
posixpath.cpython-310.opt-2.pyc File 9026 bytes June 18 2025 15:55:21.
posixpath.cpython-310.pyc File 10667 bytes June 18 2025 15:55:14.
pprint.cpython-310.opt-1.pyc File 17862 bytes June 18 2025 15:55:18.
pprint.cpython-310.opt-2.pyc File 15726 bytes June 18 2025 15:55:21.
pprint.cpython-310.pyc File 17891 bytes June 18 2025 15:55:14.
profile.cpython-310.opt-1.pyc File 14225 bytes June 18 2025 15:55:18.
profile.cpython-310.opt-2.pyc File 11267 bytes June 18 2025 15:55:22.
profile.cpython-310.pyc File 14407 bytes June 18 2025 15:55:14.
pstats.cpython-310.opt-1.pyc File 23637 bytes June 18 2025 15:55:14.
pstats.cpython-310.opt-2.pyc File 20768 bytes June 18 2025 15:55:21.
pstats.cpython-310.pyc File 23637 bytes June 18 2025 15:55:14.
pty.cpython-310.opt-1.pyc File 4159 bytes June 18 2025 15:55:13.
pty.cpython-310.opt-2.pyc File 3353 bytes June 18 2025 15:55:21.
pty.cpython-310.pyc File 4159 bytes June 18 2025 15:55:13.
py_compile.cpython-310.opt-1.pyc File 7365 bytes June 18 2025 15:55:26.
py_compile.cpython-310.opt-2.pyc File 4060 bytes June 18 2025 15:55:29.
py_compile.cpython-310.pyc File 7365 bytes June 18 2025 15:55:26.
pyclbr.cpython-310.opt-1.pyc File 9791 bytes June 18 2025 15:55:13.
pyclbr.cpython-310.opt-2.pyc File 6765 bytes June 18 2025 15:55:21.
pyclbr.cpython-310.pyc File 9791 bytes June 18 2025 15:55:13.
pydoc.cpython-310.opt-1.pyc File 85364 bytes June 18 2025 15:55:18.
pydoc.cpython-310.opt-2.pyc File 75852 bytes June 18 2025 15:55:21.
pydoc.cpython-310.pyc File 85396 bytes June 18 2025 15:55:14.
queue.cpython-310.opt-1.pyc File 10808 bytes June 18 2025 15:55:26.
queue.cpython-310.opt-2.pyc File 6552 bytes June 18 2025 15:55:29.
queue.cpython-310.pyc File 10808 bytes June 18 2025 15:55:26.
quopri.cpython-310.opt-1.pyc File 5668 bytes June 18 2025 15:55:28.
quopri.cpython-310.opt-2.pyc File 4660 bytes June 18 2025 15:55:29.
quopri.cpython-310.pyc File 5810 bytes June 18 2025 15:55:26.
random.cpython-310.opt-1.pyc File 22764 bytes June 18 2025 15:55:14.
random.cpython-310.opt-2.pyc File 15452 bytes June 18 2025 15:55:21.
random.cpython-310.pyc File 22764 bytes June 18 2025 15:55:14.
re.cpython-310.opt-1.pyc File 14243 bytes June 18 2025 15:55:14.
re.cpython-310.opt-2.pyc File 5944 bytes June 18 2025 15:55:21.
re.cpython-310.pyc File 14243 bytes June 18 2025 15:55:14.
reprlib.cpython-310.opt-1.pyc File 5266 bytes June 18 2025 15:55:18.
reprlib.cpython-310.opt-2.pyc File 5118 bytes June 18 2025 15:55:21.
reprlib.cpython-310.pyc File 5266 bytes June 18 2025 15:55:14.
rlcompleter.cpython-310.opt-1.pyc File 5970 bytes June 18 2025 15:55:27.
rlcompleter.cpython-310.opt-2.pyc File 3327 bytes June 18 2025 15:55:30.
rlcompleter.cpython-310.pyc File 5970 bytes June 18 2025 15:55:27.
runpy.cpython-310.opt-1.pyc File 9427 bytes June 18 2025 15:55:13.
runpy.cpython-310.opt-2.pyc File 7013 bytes June 18 2025 15:55:21.
runpy.cpython-310.pyc File 9427 bytes June 18 2025 15:55:13.
sched.cpython-310.opt-1.pyc File 6131 bytes June 18 2025 15:55:26.
sched.cpython-310.opt-2.pyc File 3133 bytes June 18 2025 15:55:29.
sched.cpython-310.pyc File 6131 bytes June 18 2025 15:55:26.
secrets.cpython-310.opt-1.pyc File 2191 bytes June 18 2025 15:55:14.
secrets.cpython-310.opt-2.pyc File 1155 bytes June 18 2025 15:55:22.
secrets.cpython-310.pyc File 2191 bytes June 18 2025 15:55:14.
selectors.cpython-310.opt-1.pyc File 17121 bytes June 18 2025 15:55:14.
selectors.cpython-310.opt-2.pyc File 13093 bytes June 18 2025 15:55:21.
selectors.cpython-310.pyc File 17121 bytes June 18 2025 15:55:14.
shelve.cpython-310.opt-1.pyc File 9508 bytes June 18 2025 15:55:26.
shelve.cpython-310.opt-2.pyc File 5381 bytes June 18 2025 15:55:29.
shelve.cpython-310.pyc File 9508 bytes June 18 2025 15:55:26.
shlex.cpython-310.opt-1.pyc File 7798 bytes June 18 2025 15:55:27.
shlex.cpython-310.opt-2.pyc File 7284 bytes June 18 2025 15:55:30.
shlex.cpython-310.pyc File 7798 bytes June 18 2025 15:55:27.
shutil.cpython-310.opt-1.pyc File 38552 bytes June 18 2025 15:55:26.
shutil.cpython-310.opt-2.pyc File 26624 bytes June 18 2025 15:55:29.
shutil.cpython-310.pyc File 38552 bytes June 18 2025 15:55:26.
signal.cpython-310.opt-1.pyc File 2951 bytes June 18 2025 15:55:26.
signal.cpython-310.opt-2.pyc File 2737 bytes June 18 2025 15:55:29.
signal.cpython-310.pyc File 2951 bytes June 18 2025 15:55:26.
site.cpython-310.opt-1.pyc File 17664 bytes June 18 2025 15:55:26.
site.cpython-310.opt-2.pyc File 12190 bytes June 18 2025 15:55:29.
site.cpython-310.pyc File 17664 bytes June 18 2025 15:55:26.
smtpd.cpython-310.opt-1.pyc File 26163 bytes June 18 2025 15:55:14.
smtpd.cpython-310.opt-2.pyc File 23560 bytes June 18 2025 15:55:21.
smtpd.cpython-310.pyc File 26163 bytes June 18 2025 15:55:14.
smtplib.cpython-310.opt-1.pyc File 35737 bytes June 18 2025 15:55:17.
smtplib.cpython-310.opt-2.pyc File 19563 bytes June 18 2025 15:55:21.
smtplib.cpython-310.pyc File 35782 bytes June 18 2025 15:55:14.
sndhdr.cpython-310.opt-1.pyc File 6978 bytes June 18 2025 15:55:26.
sndhdr.cpython-310.opt-2.pyc File 5715 bytes June 18 2025 15:55:29.
sndhdr.cpython-310.pyc File 6978 bytes June 18 2025 15:55:26.
socket.cpython-310.opt-1.pyc File 28768 bytes June 18 2025 15:55:28.
socket.cpython-310.opt-2.pyc File 20334 bytes June 18 2025 15:55:29.
socket.cpython-310.pyc File 28792 bytes June 18 2025 15:55:27.
socketserver.cpython-310.opt-1.pyc File 25363 bytes June 18 2025 15:55:27.
socketserver.cpython-310.opt-2.pyc File 14815 bytes June 18 2025 15:55:30.
socketserver.cpython-310.pyc File 25363 bytes June 18 2025 15:55:27.
sre_compile.cpython-310.opt-1.pyc File 15019 bytes June 18 2025 15:55:17.
sre_compile.cpython-310.opt-2.pyc File 14613 bytes June 18 2025 15:55:21.
sre_compile.cpython-310.pyc File 15210 bytes June 18 2025 15:55:14.
sre_constants.cpython-310.opt-1.pyc File 6373 bytes June 18 2025 15:55:14.
sre_constants.cpython-310.opt-2.pyc File 5956 bytes June 18 2025 15:55:21.
sre_constants.cpython-310.pyc File 6373 bytes June 18 2025 15:55:14.
sre_parse.cpython-310.opt-1.pyc File 21736 bytes June 18 2025 15:55:18.
sre_parse.cpython-310.opt-2.pyc File 21692 bytes June 18 2025 15:55:21.
sre_parse.cpython-310.pyc File 21771 bytes June 18 2025 15:55:14.
ssl.cpython-310.opt-1.pyc File 45297 bytes June 18 2025 15:55:26.
ssl.cpython-310.opt-2.pyc File 34419 bytes June 18 2025 15:55:29.
ssl.cpython-310.pyc File 45297 bytes June 18 2025 15:55:26.
stat.cpython-310.opt-1.pyc File 4289 bytes June 18 2025 15:55:26.
stat.cpython-310.opt-2.pyc File 3526 bytes June 18 2025 15:55:29.
stat.cpython-310.pyc File 4289 bytes June 18 2025 15:55:26.
statistics.cpython-310.opt-1.pyc File 36954 bytes June 18 2025 15:55:18.
statistics.cpython-310.opt-2.pyc File 18716 bytes June 18 2025 15:55:21.
statistics.cpython-310.pyc File 37067 bytes June 18 2025 15:55:14.
string.cpython-310.opt-1.pyc File 7118 bytes June 18 2025 15:55:26.
string.cpython-310.opt-2.pyc File 6024 bytes June 18 2025 15:55:29.
string.cpython-310.pyc File 7118 bytes June 18 2025 15:55:26.
stringprep.cpython-310.opt-1.pyc File 17049 bytes June 18 2025 15:55:18.
stringprep.cpython-310.opt-2.pyc File 16833 bytes June 18 2025 15:55:22.
stringprep.cpython-310.pyc File 17091 bytes June 18 2025 15:55:14.
struct.cpython-310.opt-1.pyc File 323 bytes June 18 2025 15:55:14.
struct.cpython-310.opt-2.pyc File 323 bytes June 18 2025 15:55:14.
struct.cpython-310.pyc File 323 bytes June 18 2025 15:55:14.
subprocess.cpython-310.opt-1.pyc File 44683 bytes June 18 2025 15:55:17.
subprocess.cpython-310.opt-2.pyc File 32764 bytes June 18 2025 15:55:21.
subprocess.cpython-310.pyc File 44757 bytes June 18 2025 15:55:14.
sunau.cpython-310.opt-1.pyc File 16498 bytes June 18 2025 15:55:14.
sunau.cpython-310.opt-2.pyc File 11912 bytes June 18 2025 15:55:21.
sunau.cpython-310.pyc File 16498 bytes June 18 2025 15:55:14.
symtable.cpython-310.opt-1.pyc File 12773 bytes June 18 2025 15:55:28.
symtable.cpython-310.opt-2.pyc File 10222 bytes June 18 2025 15:55:29.
symtable.cpython-310.pyc File 12851 bytes June 18 2025 15:55:26.
sysconfig.cpython-310.opt-1.pyc File 17485 bytes June 18 2025 15:55:26.
sysconfig.cpython-310.opt-2.pyc File 14751 bytes June 18 2025 15:55:29.
sysconfig.cpython-310.pyc File 17485 bytes June 18 2025 15:55:26.
tabnanny.cpython-310.opt-1.pyc File 6966 bytes June 18 2025 15:55:26.
tabnanny.cpython-310.opt-2.pyc File 6045 bytes June 18 2025 15:55:29.
tabnanny.cpython-310.pyc File 6966 bytes June 18 2025 15:55:26.
tarfile.cpython-310.opt-1.pyc File 72862 bytes June 18 2025 15:55:18.
tarfile.cpython-310.opt-2.pyc File 58055 bytes June 18 2025 15:55:21.
tarfile.cpython-310.pyc File 72877 bytes June 18 2025 15:55:14.
telnetlib.cpython-310.opt-1.pyc File 18522 bytes June 18 2025 15:55:14.
telnetlib.cpython-310.opt-2.pyc File 11132 bytes June 18 2025 15:55:21.
telnetlib.cpython-310.pyc File 18522 bytes June 18 2025 15:55:14.
tempfile.cpython-310.opt-1.pyc File 24329 bytes June 18 2025 15:55:14.
tempfile.cpython-310.opt-2.pyc File 17846 bytes June 18 2025 15:55:21.
tempfile.cpython-310.pyc File 24329 bytes June 18 2025 15:55:14.
textwrap.cpython-310.opt-1.pyc File 13804 bytes June 18 2025 15:55:17.
textwrap.cpython-310.opt-2.pyc File 6641 bytes June 18 2025 15:55:21.
textwrap.cpython-310.pyc File 13828 bytes June 18 2025 15:55:14.
this.cpython-310.opt-1.pyc File 1280 bytes June 18 2025 15:55:14.
this.cpython-310.opt-2.pyc File 1280 bytes June 18 2025 15:55:14.
this.cpython-310.pyc File 1280 bytes June 18 2025 15:55:14.
threading.cpython-310.opt-1.pyc File 44530 bytes June 18 2025 15:55:28.
threading.cpython-310.opt-2.pyc File 26445 bytes June 18 2025 15:55:29.
threading.cpython-310.pyc File 44955 bytes June 18 2025 15:55:26.
timeit.cpython-310.opt-1.pyc File 11785 bytes June 18 2025 15:55:14.
timeit.cpython-310.opt-2.pyc File 5978 bytes June 18 2025 15:55:21.
timeit.cpython-310.pyc File 11785 bytes June 18 2025 15:55:14.
token.cpython-310.opt-1.pyc File 2754 bytes June 18 2025 15:55:17.
token.cpython-310.opt-2.pyc File 2725 bytes June 18 2025 15:55:21.
token.cpython-310.pyc File 2754 bytes June 18 2025 15:55:14.
tokenize.cpython-310.opt-1.pyc File 17180 bytes June 18 2025 15:55:28.
tokenize.cpython-310.opt-2.pyc File 13445 bytes June 18 2025 15:55:29.
tokenize.cpython-310.pyc File 17210 bytes June 18 2025 15:55:26.
trace.cpython-310.opt-1.pyc File 19886 bytes June 18 2025 15:55:13.
trace.cpython-310.opt-2.pyc File 16973 bytes June 18 2025 15:55:21.
trace.cpython-310.pyc File 19886 bytes June 18 2025 15:55:13.
traceback.cpython-310.opt-1.pyc File 21728 bytes June 18 2025 15:55:26.
traceback.cpython-310.opt-2.pyc File 12735 bytes June 18 2025 15:55:29.
traceback.cpython-310.pyc File 21728 bytes June 18 2025 15:55:26.
tracemalloc.cpython-310.opt-1.pyc File 17541 bytes June 18 2025 15:55:26.
tracemalloc.cpython-310.opt-2.pyc File 16182 bytes June 18 2025 15:55:29.
tracemalloc.cpython-310.pyc File 17541 bytes June 18 2025 15:55:26.
tty.cpython-310.opt-1.pyc File 1095 bytes June 18 2025 15:55:13.
tty.cpython-310.opt-2.pyc File 998 bytes June 18 2025 15:55:21.
tty.cpython-310.pyc File 1095 bytes June 18 2025 15:55:13.
types.cpython-310.opt-1.pyc File 9541 bytes June 18 2025 15:55:14.
types.cpython-310.opt-2.pyc File 8136 bytes June 18 2025 15:55:21.
types.cpython-310.pyc File 9541 bytes June 18 2025 15:55:14.
typing.cpython-310.opt-1.pyc File 85141 bytes June 18 2025 15:55:28.
typing.cpython-310.opt-2.pyc File 58714 bytes June 18 2025 15:55:29.
typing.cpython-310.pyc File 85293 bytes June 18 2025 15:55:26.
uu.cpython-310.opt-1.pyc File 3883 bytes June 18 2025 15:55:14.
uu.cpython-310.opt-2.pyc File 3655 bytes June 18 2025 15:55:21.
uu.cpython-310.pyc File 3883 bytes June 18 2025 15:55:14.
uuid.cpython-310.opt-1.pyc File 22407 bytes June 18 2025 15:55:18.
uuid.cpython-310.opt-2.pyc File 14776 bytes June 18 2025 15:55:21.
uuid.cpython-310.pyc File 22514 bytes June 18 2025 15:55:14.
warnings.cpython-310.opt-1.pyc File 13223 bytes June 18 2025 15:55:18.
warnings.cpython-310.opt-2.pyc File 11004 bytes June 18 2025 15:55:21.
warnings.cpython-310.pyc File 13662 bytes June 18 2025 15:55:14.
wave.cpython-310.opt-1.pyc File 17581 bytes June 18 2025 15:55:18.
wave.cpython-310.opt-2.pyc File 11601 bytes June 18 2025 15:55:21.
wave.cpython-310.pyc File 17610 bytes June 18 2025 15:55:14.
weakref.cpython-310.opt-1.pyc File 20343 bytes June 18 2025 15:55:28.
weakref.cpython-310.opt-2.pyc File 17114 bytes June 18 2025 15:55:29.
weakref.cpython-310.pyc File 20359 bytes June 18 2025 15:55:26.
webbrowser.cpython-310.opt-1.pyc File 16999 bytes June 18 2025 15:55:28.
webbrowser.cpython-310.opt-2.pyc File 14667 bytes June 18 2025 15:55:29.
webbrowser.cpython-310.pyc File 17016 bytes June 18 2025 15:55:26.
xdrlib.cpython-310.opt-1.pyc File 7896 bytes June 18 2025 15:55:27.
xdrlib.cpython-310.opt-2.pyc File 7431 bytes June 18 2025 15:55:30.
xdrlib.cpython-310.pyc File 7896 bytes June 18 2025 15:55:27.
zipapp.cpython-310.opt-1.pyc File 6029 bytes June 18 2025 15:55:14.
zipapp.cpython-310.opt-2.pyc File 4869 bytes June 18 2025 15:55:21.
zipapp.cpython-310.pyc File 6029 bytes June 18 2025 15:55:14.
zipfile.cpython-310.opt-1.pyc File 61541 bytes June 18 2025 15:55:29.
zipfile.cpython-310.opt-2.pyc File 51931 bytes June 18 2025 15:55:30.
zipfile.cpython-310.pyc File 61562 bytes June 18 2025 15:55:27.
zipimport.cpython-310.opt-1.pyc File 16992 bytes June 18 2025 15:55:28.
zipimport.cpython-310.opt-2.pyc File 13284 bytes June 18 2025 15:55:29.
zipimport.cpython-310.pyc File 17049 bytes June 18 2025 15:55:26.

Reading File: //opt/alt/python310/lib64/python3.10/__pycache__/statistics.cpython-310.pyc

o

�=?hŨ�@s�dZgd�ZddlZddlZddlZddlmZddlmZddl	m
Z
mZddlm
Z
mZddlmZmZmZmZmZmZmZmZdd	lmZdd
lmZmZGdd�de�Zd
d�Zdd�Zdd�Z dd�Z!dd�Z"dd�Z#dd�Z$dOdd�Z%dd�Z&d d!�Z'd"d#�Z(dPd$d%�Z)d&d'�Z*d(d)�Z+d*d+�Z,dQd-d.�Z-d/d0�Z.d1d2�Z/d3d4d5�d6d7�Z0dPd8d9�Z1dPd:d;�Z2dPd<d=�Z3dPd>d?�Z4dPd@dA�Z5dBdC�Z6dDdE�Z7edFdG�Z8dHdI�Z9dJdK�Z:zddLl;m:Z:Wn	e<y�YnwGdMdN�dN�Z=dS)Ra�

Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  ==================================================
Function            Description
==================  ==================================================
mean                Arithmetic mean (average) of data.
fmean               Fast, floating point arithmetic mean.
geometric_mean      Geometric mean of data.
harmonic_mean       Harmonic mean of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
multimode           List of modes (most common values of data).
quantiles           Divide data into intervals with equal probability.
==================  ==================================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Statistics for relations between two inputs
-------------------------------------------

==================  ====================================================
Function            Description
==================  ====================================================
covariance          Sample covariance for two variables.
correlation         Pearson's correlation coefficient for two variables.
linear_regression   Intercept and slope for simple linear regression.
==================  ====================================================

Calculate covariance, Pearson's correlation, and simple linear regression
for two inputs:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance(x, y)
0.75
>>> correlation(x, y)  #doctest: +ELLIPSIS
0.31622776601...
>>> linear_regression(x, y)  #doctest:
LinearRegression(slope=0.1, intercept=1.5)


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

)�
NormalDist�StatisticsError�correlation�
covariance�fmean�geometric_mean�
harmonic_mean�linear_regression�mean�median�median_grouped�median_high�
median_low�mode�	multimode�pstdev�	pvariance�	quantiles�stdev�variance�N��Fraction)�Decimal)�groupby�repeat)�bisect_left�bisect_right)�hypot�sqrt�fabs�exp�erf�tau�log�fsum)�
itemgetter)�Counter�
namedtuplec@seZdZdS)rN)�__name__�
__module__�__qualname__�r+r+�1/opt/alt/python310/lib64/python3.10/statistics.pyr�src
Cs�d}i}|j}t}t|t�D] \}}t||�}tt|�D]\}}|d7}||d�|||<qqd|vr>|d}	t|	�r=J�ntdd�|�	�D��}	||	|fS)a�_sum(data) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 0.25])
    (<class 'float'>, Fraction(19, 2), 5)

    Some sources of round-off error will be avoided:

    # Built-in sum returns zero.
    >>> _sum([1e50, 1, -1e50] * 1000)
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    r�Ncs��|]
\}}t||�VqdS�Nr��.0�d�nr+r+r,�	<genexpr>���z_sum.<locals>.<genexpr>)
�get�intr�type�_coerce�map�_exact_ratio�	_isfinite�sum�items)
�data�count�partialsZpartials_get�T�typ�valuesr3r2�totalr+r+r,�_sum�s 
�
rFcCs(z|��WStyt�|�YSwr/)Z	is_finite�AttributeError�mathZisfinite)�xr+r+r,r<�s

�r<cCs�|tusJd��||ur|S|tus|tur|S|tur|St||�r%|St||�r,|St|t�r3|St|t�r:|St|t�rFt|t�rF|St|t�rRt|t�rR|Sd}t||j|jf��)z�Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    zinitial type T is boolz"don't know how to coerce %s and %s)�boolr7�
issubclassr�float�	TypeErrorr()rB�S�msgr+r+r,r9�sr9c	Cs~z|��WStyYnttfy"t|�rJ�|dfYSwz|j|jfWSty>dt|�j�d�}t	|��w)z�Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    Nzcan't convert type 'z' to numerator/denominator)
�as_integer_ratiorG�
OverflowError�
ValueErrorr<�	numerator�denominatorr8r(rM)rIrOr+r+r,r;�s
��r;cCsft|�|ur|St|t�r|jdkrt}z||�WSty2t|t�r1||j�||j�YS�w)z&Convert value to given numeric type T.r-)r8rKr7rTrLrMrrS)�valuerBr+r+r,�_converts

�rVcCs*t||�}|t|�kr|||kr|St�)z,Locate the leftmost value exactly equal to x)r�lenrR)�arI�ir+r+r,�
_find_lteqs
rZcCs:t|||d�}|t|�dkr||d|kr|dSt�)z-Locate the rightmost value exactly equal to x)�lor-)rrWrR)rX�lrIrYr+r+r,�
_find_rteq"s r]�negative valueccs&�|D]
}|dkr
t|��|VqdS)z7Iterate over values, failing if any are less than zero.rN)r)rD�errmsgrIr+r+r,�	_fail_neg*s��r`cCsTt|�|ur
t|�}t|�}|dkrtd��t|�\}}}||ks#J�t|||�S)a�Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    r-z%mean requires at least one data point)�iter�listrWrrFrV)r?r3rBrEr@r+r+r,r	4sr	cshzt|��Wntyd��fdd�}t||��}Ynwt|�}z|�WSty3td�d�w)z�Convert data to floats and compute the arithmetic mean.

    This runs faster than the mean() function and it always returns a float.
    If the input dataset is empty, it raises a StatisticsError.

    >>> fmean([3.5, 4.0, 5.25])
    4.25
    rc3s"�t|dd�D]\�}|VqdS)Nr-)�start)�	enumerate)�iterablerI�r3r+r,r@\s��zfmean.<locals>.countz&fmean requires at least one data pointN)rWrMr$�ZeroDivisionErrorr)r?r@rEr+rfr,rNs	�	

�rcCs.z
tttt|���WStytd�d�w)aYConvert data to floats and compute the geometric mean.

    Raises a StatisticsError if the input dataset is empty,
    if it contains a zero, or if it contains a negative value.

    No special efforts are made to achieve exact results.
    (However, this may change in the future.)

    >>> round(geometric_mean([54, 24, 36]), 9)
    36.0
    zGgeometric mean requires a non-empty dataset containing positive numbersN)r rr:r#rRr)r?r+r+r,ris��rc
Cs2t|�|ur
t|�}d}t|�}|dkrtd��|dkr:|dur:|d}t|tjtf�r6|dkr4t|��|Std��|durFt	d|�}|}n#t|�|urPt|�}t|�|krZtd��t
dd	�t||�D��\}}}zt||�}t
d
d	�t||�D��\}}}	Wn
t
y�YdSw|dkr�td��t|||�S)a�Return the harmonic mean of data.

    The harmonic mean is the reciprocal of the arithmetic mean of the
    reciprocals of the data.  It can be used for averaging ratios or
    rates, for example speeds.

    Suppose a car travels 40 km/hr for 5 km and then speeds-up to
    60 km/hr for another 5 km. What is the average speed?

        >>> harmonic_mean([40, 60])
        48.0

    Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
    speeds-up to 60 km/hr for the remaining 30 km of the journey. What
    is the average speed?

        >>> harmonic_mean([40, 60], weights=[5, 30])
        56.0

    If ``data`` is empty, or any element is less than zero,
    ``harmonic_mean`` will raise ``StatisticsError``.
    z.harmonic mean does not support negative valuesr-z.harmonic_mean requires at least one data pointNrzunsupported typez*Number of weights does not match data sizecss�|]}|VqdSr/r+)r1�wr+r+r,r4�s�z harmonic_mean.<locals>.<genexpr>css$�|]
\}}|r||ndVqdS)rNr+)r1rhrIr+r+r,r4���"zWeighted sum must be positive)rarbrWr�
isinstance�numbersZRealrrMrrFr`�ziprgrV)
r?Zweightsr_r3rIZsum_weights�_rBrEr@r+r+r,r|s<

"�rcCsXt|�}t|�}|dkrtd��|ddkr||dS|d}||d||dS)aBReturn the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    r�no median for empty data�r-��sortedrWr)r?r3rYr+r+r,r
�s
r
cCsHt|�}t|�}|dkrtd��|ddkr||dS||ddS)a	Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    rrnror-rp�r?r3r+r+r,r
�sr
cCs,t|�}t|�}|dkrtd��||dS)aReturn the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    rrnrorprrr+r+r,r�s
rr-c
Cs�t|�}t|�}|dkrtd��|dkr|dS||d}||fD]}t|ttf�r1td|��q"z||d}WntyMt|�t|�d}Ynwt||�}t	|||�}|}||d}	|||d||	S)a�Return the 50th percentile (median) of grouped continuous data.

    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
    3.7
    >>> median_grouped([52, 52, 53, 54])
    52.5

    This calculates the median as the 50th percentile, and should be
    used when your data is continuous and grouped. In the above example,
    the values 1, 2, 3, etc. actually represent the midpoint of classes
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
    class 3.5-4.5, and interpolation is used to estimate it.

    Optional argument ``interval`` represents the class interval, and
    defaults to 1. Changing the class interval naturally will change the
    interpolated 50th percentile value:

    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
    3.25
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
    3.5

    This function does not check whether the data points are at least
    ``interval`` apart.
    rrnr-rozexpected number but got %r)
rqrWrrj�str�bytesrMrLrZr])
r?Zintervalr3rI�obj�L�l1�l2Zcf�fr+r+r,r�s*��
rcCs:tt|���d�}z|ddWStytd�d�w)axReturn the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

        >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
        3

    This also works with nominal (non-numeric) data:

        >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
        'red'

    If there are multiple modes with same frequency, return the first one
    encountered:

        >>> mode(['red', 'red', 'green', 'blue', 'blue'])
        'red'

    If *data* is empty, ``mode``, raises StatisticsError.

    r-rzno mode for empty dataN)r&ra�most_common�
IndexErrorr)r?Zpairsr+r+r,r,s
�rcCs@tt|����}tt|td�d�dgf�\}}tttd�|��S)a.Return a list of the most frequently occurring values.

    Will return more than one result if there are multiple modes
    or an empty list if *data* is empty.

    >>> multimode('aabbbbbbbbcc')
    ['b']
    >>> multimode('aabbbbccddddeeffffgg')
    ['b', 'd', 'f']
    >>> multimode('')
    []
    r-)�keyr)r&rarz�nextrr%rbr:)r?ZcountsZmaxcountZ
mode_itemsr+r+r,rJs
r��	exclusive)r3�methodc
Cs<|dkrtd��t|�}t|�}|dkrtd��|dkrL|d}g}td|�D]"}t|||�\}}||||||d||}	|�|	�q'|S|dkr�|d}g}td|�D]9}|||}|dkridn||dkrs|dn|}||||}||d||||||}	|�|	�q[|Std|����)a�Divide *data* into *n* continuous intervals with equal probability.

    Returns a list of (n - 1) cut points separating the intervals.

    Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
    Set *n* to 100 for percentiles which gives the 99 cuts points that
    separate *data* in to 100 equal sized groups.

    The *data* can be any iterable containing sample.
    The cut points are linearly interpolated between data points.

    If *method* is set to *inclusive*, *data* is treated as population
    data.  The minimum value is treated as the 0th percentile and the
    maximum value is treated as the 100th percentile.
    r-zn must be at least 1roz"must have at least two data pointsZ	inclusiverzUnknown method: )rrqrW�range�divmod�appendrR)
r?r3r�Zld�m�resultrY�jZdeltaZinterpolatedr+r+r,r�s2$$$rcs��durt�fdd�|D��\}}}||fSt|�\}}}||��\}}t�}tt|�D]\}}	|||	|}
|	|}||||
|
7<q-d|vr\|d}t|�rXJ�||fStdd�|��D��}||fS)a;Return sum of square deviations of sequence data.

    If ``c`` is None, the mean is calculated in one pass, and the deviations
    from the mean are calculated in a second pass. Otherwise, deviations are
    calculated from ``c`` as given. Use the second case with care, as it can
    lead to garbage results.
    Nc3��|]	}|�dVqdS)roNr+)r1rI��cr+r,r4���z_ss.<locals>.<genexpr>csr.r/rr0r+r+r,r4�r5)rFrPr&r:r;r<r=r>)r?r�rBrEr@Zmean_nZmean_drAr3r2Zdiff_nZdiff_dr+r�r,�_ss�s �r�cCsLt|�|ur
t|�}t|�}|dkrtd��t||�\}}t||d|�S)a�Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    roz*variance requires at least two data pointsr-�rarbrWrr�rV)r?�xbarr3rB�ssr+r+r,r�s&rcCsHt|�|ur
t|�}t|�}|dkrtd��t||�\}}t|||�S)a,Return the population variance of ``data``.

    data should be a sequence or iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    r-z*pvariance requires at least one data pointr�)r?�mur3rBr�r+r+r,rs#rcC�2t||�}z|��WStyt�|�YSw)z�Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    )rrrGrH)r?r��varr+r+r,r0�

�rcCr�)z�Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    )rrrGrH)r?r�r�r+r+r,rCr�rcsnt|�}t|�|krtd��|dkrtd��t|�|�t|�|�t��fdd�t||�D��}||dS)apCovariance

    Return the sample covariance of two inputs *x* and *y*. Covariance
    is a measure of the joint variability of two inputs.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
    >>> covariance(x, y)
    0.75
    >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> covariance(x, z)
    -7.5
    >>> covariance(z, x)
    -7.5

    zDcovariance requires that both inputs have same number of data pointsroz,covariance requires at least two data pointsc3�$�|]
\}}|�|�VqdSr/r+�r1�xi�yi�r��ybarr+r,r4urizcovariance.<locals>.<genexpr>r-)rWrr$rl)rI�yr3�sxyr+r�r,r]srcs�t|�}t|�|krtd��|dkrtd��t|�|�t|�|�t��fdd�t||�D��}t�fdd�|D��}t�fdd�|D��}z	|t||�WSty[td��w)	aPearson's correlation coefficient

    Return the Pearson's correlation coefficient for two inputs. Pearson's
    correlation coefficient *r* takes values between -1 and +1. It measures the
    strength and direction of the linear relationship, where +1 means very
    strong, positive linear relationship, -1 very strong, negative linear
    relationship, and 0 no linear relationship.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> correlation(x, x)
    1.0
    >>> correlation(x, y)
    -1.0

    zEcorrelation requires that both inputs have same number of data pointsroz-correlation requires at least two data pointsc3r�r/r+r�r�r+r,r4�rizcorrelation.<locals>.<genexpr>c3r���@Nr+�r1r��r�r+r,r4�r�c3r�r�r+)r1r�)r�r+r,r4�r�z&at least one of the inputs is constant)rWrr$rlrrg)rIr�r3r��sxxZsyyr+r�r,rys�r�LinearRegression��slope�	interceptcs�t|�}t|�|krtd��|dkrtd��t|�|�t|�|�t��fdd�t||�D��}t�fdd�|D��}z||}WntyMtd��w�|�}t||d�S)	a�Slope and intercept for simple linear regression.

    Return the slope and intercept of simple linear regression
    parameters estimated using ordinary least squares. Simple linear
    regression describes relationship between an independent variable
    *x* and a dependent variable *y* in terms of linear function:

        y = slope * x + intercept + noise

    where *slope* and *intercept* are the regression parameters that are
    estimated, and noise represents the variability of the data that was
    not explained by the linear regression (it is equal to the
    difference between predicted and actual values of the dependent
    variable).

    The parameters are returned as a named tuple.

    >>> x = [1, 2, 3, 4, 5]
    >>> noise = NormalDist().samples(5, seed=42)
    >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
    >>> linear_regression(x, y)  #doctest: +ELLIPSIS
    LinearRegression(slope=3.09078914170..., intercept=1.75684970486...)

    zKlinear regression requires that both inputs have same number of data pointsroz3linear regression requires at least two data pointsc3r�r/r+r�r�r+r,r4�riz$linear_regression.<locals>.<genexpr>c3r�r�r+r�r�r+r,r4�r�z
x is constantr�)rWrr$rlrgr�)rIr�r3r�r�r�r�r+r�r,r�s �rcCs�|d}t|�dkrXd||}d|d|d|d|d|d	|d
|d|}d|d
|d|d|d|d|d|d}||}|||S|dkr^|nd|}tt|��}|dkr�|d}d|d|d|d|d|d|d|d}d|d |d!|d"|d#|d$|d%|d}n@|d}d&|d'|d(|d)|d*|d+|d,|d-}d.|d/|d0|d1|d2|d3|d4|d}||}|dkr�|}|||S)5N��?g333333�?g��Q��?g^�}o)��@g�E.k�R�@g ��Ul�@g*u��>l�@g�N����@g�"]Ξ@gnC���`@gu��@giK��~j�@gv��|E�@g��d�|1�@gfR��r��@g��u.2�@g���~y�@g�n8(E@��?�g@g�������?g鬷�ZaI?gg�El�D�?g7\�����?g�uS�S�?g�=�.
@gj%b�@g���Hw�@gjR�e�?g�9dh?
>g('߿��A?g��~z �?g@�3��?gɅ3��?g3fR�x�?gI�F��l@g����t��>g*�Y��n�>gESB\T?g�N;A+�?g�UR1��?gE�F���?gP�n��@g&�>���@g����i�<g�@�F�>g�tcI,\�>g�ŝ���I?g*F2�v�?g�C4�?g��O�1�?)rrr#)�pr��sigma�q�rZnumZdenrIr+r+r,�_normal_dist_inv_cdf�sd�����������������������������������������������������	��������������������������r�)r�c@seZdZdZddd�Zd>dd�Zed	d
��Zdd�d
d�Zdd�Z	dd�Z
dd�Zd?dd�Zdd�Z
dd�Zedd��Zedd��Zed d!��Zed"d#��Zed$d%��Zd&d'�Zd(d)�Zd*d+�Zd,d-�Zd.d/�Zd0d1�ZeZd2d3�ZeZd4d5�Zd6d7�Zd8d9�Z d:d;�Z!d<d=�Z"dS)@rz(Normal distribution of a random variablez(Arithmetic mean of a normal distributionz+Standard deviation of a normal distribution��_mu�_sigmar�r�cCs(|dkrtd��t|�|_t|�|_dS)zDNormalDist where mu is the mean and sigma is the standard deviation.r�zsigma must be non-negativeN)rrLr�r�)�selfr�r�r+r+r,�__init__%s
zNormalDist.__init__cCs.t|ttf�st|�}t|�}||t||��S)z5Make a normal distribution instance from sample data.)rjrb�tuplerr)�clsr?r�r+r+r,�from_samples,szNormalDist.from_samplesN)�seedcsB|durtjnt�|�j�|j|j�����fdd�t|�D�S)z=Generate *n* samples for a given mean and standard deviation.Ncsg|]}�����qSr+r+�r1rY��gaussr�r�r+r,�
<listcomp>8sz&NormalDist.samples.<locals>.<listcomp>)�randomr�ZRandomr�r�r�)r�r3r�r+r�r,�samples4szNormalDist.samplescCs<|jd}|std��t||jdd|�tt|�S)z4Probability density function.  P(x <= X < x+dx) / dxr�z$pdf() not defined when sigma is zerog�)r�rr r�rr")r�rIrr+r+r,�pdf:s
&zNormalDist.pdfcCs2|jstd��ddt||j|jtd��S)z,Cumulative distribution function.  P(X <= x)z$cdf() not defined when sigma is zeror�r�r�)r�rr!r�r�r�rIr+r+r,�cdfAs$zNormalDist.cdfcCs:|dks|dkrtd��|jdkrtd��t||j|j�S)aSInverse cumulative distribution function.  x : P(X <= x) = p

        Finds the value of the random variable such that the probability of
        the variable being less than or equal to that value equals the given
        probability.

        This function is also called the percent point function or quantile
        function.
        r�r�z$p must be in the range 0.0 < p < 1.0z-cdf() not defined when sigma at or below zero)rr�r�r�)r�r�r+r+r,�inv_cdfGs


zNormalDist.inv_cdfr~cs��fdd�td��D�S)anDivide into *n* continuous intervals with equal probability.

        Returns a list of (n - 1) cut points separating the intervals.

        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
        Set *n* to 100 for percentiles which gives the 99 cuts points that
        separate the normal distribution in to 100 equal sized groups.
        csg|]	}��|���qSr+)r�r��r3r�r+r,r�`sz(NormalDist.quantiles.<locals>.<listcomp>r-)r�)r�r3r+r�r,rWs	zNormalDist.quantilescCst|t�s	td��||}}|j|jf|j|jfkr||}}|j|j}}|r*|s.td��||}t|j|j�}|sKdt|d|jt	d��S|j||j|}|j|jt	|d|t
||��}	||	|}
||	|}dt|�|
�|�|
��t|�|�|�|��S)a�Compute the overlapping coefficient (OVL) between two normal distributions.

        Measures the agreement between two normal probability distributions.
        Returns a value between 0.0 and 1.0 giving the overlapping area in
        the two underlying probability density functions.

            >>> N1 = NormalDist(2.4, 1.6)
            >>> N2 = NormalDist(3.2, 2.0)
            >>> N1.overlap(N2)
            0.8035050657330205
        z$Expected another NormalDist instancez(overlap() not defined when sigma is zeror�r�)rjrrMr�r�rrrr!rr#r�)r��other�X�YZX_varZY_varZdvZdmrX�b�x1�x2r+r+r,�overlapbs"


(4zNormalDist.overlapcCs|jstd��||j|jS)z�Compute the Standard Score.  (x - mean) / stdev

        Describes *x* in terms of the number of standard deviations
        above or below the mean of the normal distribution.
        z'zscore() not defined when sigma is zero)r�rr�r�r+r+r,�zscore�szNormalDist.zscorecC�|jS)z+Arithmetic mean of the normal distribution.�r��r�r+r+r,r	��zNormalDist.meancCr�)z,Return the median of the normal distributionr�r�r+r+r,r
�r�zNormalDist.mediancCr�)z�Return the mode of the normal distribution

        The mode is the value x where which the probability density
        function (pdf) takes its maximum value.
        r�r�r+r+r,r�szNormalDist.modecCr�)z.Standard deviation of the normal distribution.�r�r�r+r+r,r�r�zNormalDist.stdevcCs
|jdS)z!Square of the standard deviation.r�r�r�r+r+r,r�s
zNormalDist.variancecCs8t|t�rt|j|jt|j|j��St|j||j�S)ajAdd a constant or another NormalDist instance.

        If *other* is a constant, translate mu by the constant,
        leaving sigma unchanged.

        If *other* is a NormalDist, add both the means and the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        �rjrr�rr��r�r�r+r+r,�__add__��

zNormalDist.__add__cCs8t|t�rt|j|jt|j|j��St|j||j�S)asSubtract a constant or another NormalDist instance.

        If *other* is a constant, translate by the constant mu,
        leaving sigma unchanged.

        If *other* is a NormalDist, subtract the means and add the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        r�r�r+r+r,�__sub__�r�zNormalDist.__sub__cCst|j||jt|��S)z�Multiply both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        �rr�r�rr�r+r+r,�__mul__��zNormalDist.__mul__cCst|j||jt|��S)z�Divide both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        r�r�r+r+r,�__truediv__�r�zNormalDist.__truediv__cCst|j|j�S)zReturn a copy of the instance.�rr�r��r�r+r+r,�__pos__�szNormalDist.__pos__cCst|j|j�S)z(Negates mu while keeping sigma the same.r�r�r+r+r,�__neg__��zNormalDist.__neg__cCs
||S)z<Subtract a NormalDist from a constant or another NormalDist.r+r�r+r+r,�__rsub__�s
zNormalDist.__rsub__cCs&t|t�stS|j|jko|j|jkS)zFTwo NormalDist objects are equal if their mu and sigma are both equal.)rjr�NotImplementedr�r�r�r+r+r,�__eq__�s
zNormalDist.__eq__cCst|j|jf�S)zCNormalDist objects hash equal if their mu and sigma are both equal.)�hashr�r�r�r+r+r,�__hash__�r�zNormalDist.__hash__cCs t|�j�d|j�d|j�d�S)Nz(mu=z, sigma=�))r8r(r�r�r�r+r+r,�__repr__�s zNormalDist.__repr__cCs|j|jfSr/r�r�r+r+r,�__getstate__�szNormalDist.__getstate__cCs|\|_|_dSr/r�)r��stater+r+r,�__setstate__�szNormalDist.__setstate__)r�r�)r~)#r(r)r*�__doc__�	__slots__r��classmethodr�r�r�r�r�rr�r��propertyr	r
rrrr�r�r�r�r�r��__radd__r��__rmul__r�r�r�r�r�r+r+r+r,rsN�


"




r)r^r/)r-)>r��__all__rHrkr�Z	fractionsrZdecimalr�	itertoolsrrZbisectrrrrrr r!r"r#r$�operatorr%�collectionsr&r'rRrrFr<r9r;rVrZr]r`r	rrrr
r
rrrrrr�rrrrrrr�rr�Z_statistics�ImportErrorrr+r+r+r,�<module>s`j(4


8
77
8

/
,

!-K�

SILENT KILLER Tool