SILENT KILLERPanel

Current Path: > > opt > alt > python33 > lib64 > > python3.3 >


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/alt/python33/lib64//python3.3/

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
collections Directory - -
concurrent Directory - -
config-3.3m Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
html Directory - -
http Directory - -
idlelib Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
plat-linux Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
test Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
__future__.py File 4584 bytes April 17 2024 16:58:21.
__phello__.foo.py File 64 bytes April 17 2024 16:58:20.
_compat_pickle.py File 4338 bytes April 17 2024 16:58:19.
_dummy_thread.py File 4769 bytes April 17 2024 16:58:20.
_markupbase.py File 14598 bytes April 17 2024 16:58:15.
_osx_support.py File 18855 bytes April 17 2024 16:58:20.
_pyio.py File 72905 bytes April 17 2024 16:58:17.
_strptime.py File 21674 bytes April 17 2024 16:58:20.
_sysconfigdata.py File 22842 bytes April 17 2024 16:58:20.
_threading_local.py File 7410 bytes April 17 2024 16:58:15.
_weakrefset.py File 5705 bytes April 17 2024 16:58:14.
abc.py File 8057 bytes April 17 2024 16:58:15.
aifc.py File 31054 bytes April 17 2024 16:58:21.
antigravity.py File 475 bytes April 17 2024 16:58:16.
argparse.py File 89069 bytes April 17 2024 16:58:20.
ast.py File 12142 bytes April 17 2024 16:58:20.
asynchat.py File 11588 bytes April 17 2024 16:58:19.
asyncore.py File 20753 bytes April 17 2024 16:58:21.
base64.py File 13986 bytes April 17 2024 16:58:17.
bdb.py File 21894 bytes April 17 2024 16:58:19.
binhex.py File 13708 bytes April 17 2024 16:58:14.
bisect.py File 2595 bytes April 17 2024 16:58:13.
bz2.py File 18473 bytes April 17 2024 16:58:20.
cProfile.py File 6361 bytes April 17 2024 16:58:14.
calendar.py File 22940 bytes April 17 2024 16:58:20.
cgi.py File 35554 bytes April 17 2024 16:58:20.
cgitb.py File 12041 bytes April 17 2024 16:58:21.
chunk.py File 5377 bytes April 17 2024 16:58:17.
cmd.py File 14860 bytes April 17 2024 16:58:14.
code.py File 10030 bytes April 17 2024 16:58:16.
codecs.py File 35956 bytes April 17 2024 16:58:15.
codeop.py File 5994 bytes April 17 2024 16:58:14.
colorsys.py File 3691 bytes April 17 2024 16:58:15.
compileall.py File 9743 bytes April 17 2024 16:58:14.
configparser.py File 49437 bytes April 17 2024 16:58:15.
contextlib.py File 9125 bytes April 17 2024 16:58:14.
copy.py File 8991 bytes April 17 2024 16:58:15.
copyreg.py File 6611 bytes April 17 2024 16:58:20.
crypt.py File 1879 bytes April 17 2024 16:58:14.
csv.py File 16185 bytes April 17 2024 16:58:15.
datetime.py File 74954 bytes April 17 2024 16:58:21.
decimal.py File 228558 bytes April 17 2024 16:58:19.
difflib.py File 82519 bytes April 17 2024 16:58:17.
dis.py File 10134 bytes April 17 2024 16:58:15.
doctest.py File 102933 bytes April 17 2024 16:58:15.
dummy_threading.py File 2815 bytes April 17 2024 16:58:14.
filecmp.py File 9597 bytes April 17 2024 16:58:15.
fileinput.py File 14256 bytes April 17 2024 16:58:17.
fnmatch.py File 3163 bytes April 17 2024 16:58:15.
formatter.py File 14930 bytes April 17 2024 16:58:15.
fractions.py File 23033 bytes April 17 2024 16:58:14.
ftplib.py File 40253 bytes April 17 2024 16:58:15.
functools.py File 13596 bytes April 17 2024 16:58:21.
genericpath.py File 3093 bytes April 17 2024 16:58:21.
getopt.py File 7488 bytes April 17 2024 16:58:20.
getpass.py File 5793 bytes April 17 2024 16:58:14.
gettext.py File 20637 bytes April 17 2024 16:58:20.
glob.py File 2838 bytes April 17 2024 16:58:14.
gzip.py File 24403 bytes April 17 2024 16:58:20.
hashlib.py File 6193 bytes April 17 2024 16:58:21.
heapq.py File 17997 bytes April 17 2024 16:58:13.
hmac.py File 4440 bytes April 17 2024 16:58:17.
imaplib.py File 50111 bytes April 17 2024 16:58:20.
imghdr.py File 3528 bytes April 17 2024 16:58:20.
imp.py File 9727 bytes April 17 2024 16:58:15.
inspect.py File 78960 bytes April 17 2024 16:58:19.
io.py File 3280 bytes April 17 2024 16:58:15.
ipaddress.py File 70303 bytes April 17 2024 16:58:20.
keyword.py File 2060 bytes April 17 2024 16:58:20.
linecache.py File 3864 bytes April 17 2024 16:58:16.
locale.py File 93215 bytes April 17 2024 16:58:19.
lzma.py File 17454 bytes April 17 2024 16:58:20.
macpath.py File 5617 bytes April 17 2024 16:58:15.
macurl2path.py File 2732 bytes April 17 2024 16:58:15.
mailbox.py File 79093 bytes April 17 2024 16:58:19.
mailcap.py File 7437 bytes April 17 2024 16:58:14.
mimetypes.py File 20735 bytes April 17 2024 16:58:19.
modulefinder.py File 23198 bytes April 17 2024 16:58:14.
netrc.py File 5747 bytes April 17 2024 16:58:17.
nntplib.py File 42786 bytes April 17 2024 16:58:13.
ntpath.py File 20437 bytes April 17 2024 16:58:14.
nturl2path.py File 2396 bytes April 17 2024 16:58:20.
numbers.py File 10398 bytes April 17 2024 16:58:20.
opcode.py File 5098 bytes April 17 2024 16:58:21.
optparse.py File 60346 bytes April 17 2024 16:58:20.
os.py File 34779 bytes April 17 2024 16:58:14.
os2emxpath.py File 4659 bytes April 17 2024 16:58:15.
pdb.py File 60653 bytes April 17 2024 16:58:16.
pickle.py File 47858 bytes April 17 2024 16:58:17.
pickletools.py File 81349 bytes April 17 2024 16:58:15.
pipes.py File 8916 bytes April 17 2024 16:58:20.
pkgutil.py File 21539 bytes April 17 2024 16:58:15.
platform.py File 50742 bytes April 17 2024 16:58:15.
plistlib.py File 14777 bytes April 17 2024 16:58:13.
poplib.py File 11372 bytes April 17 2024 16:58:13.
posixpath.py File 14254 bytes April 17 2024 16:58:16.
pprint.py File 12700 bytes April 17 2024 16:58:15.
profile.py File 21448 bytes April 17 2024 16:58:17.
pstats.py File 26372 bytes April 17 2024 16:58:14.
pty.py File 5055 bytes April 17 2024 16:58:14.
py_compile.py File 6717 bytes April 17 2024 16:58:19.
pyclbr.py File 13438 bytes April 17 2024 16:58:13.
pydoc.py File 101644 bytes April 17 2024 16:58:15.
queue.py File 8835 bytes April 17 2024 16:58:20.
quopri.py File 7315 bytes April 17 2024 16:58:20.
random.py File 25660 bytes April 17 2024 16:58:14.
re.py File 14973 bytes April 17 2024 16:58:17.
reprlib.py File 5110 bytes April 17 2024 16:58:15.
rlcompleter.py File 5526 bytes April 17 2024 16:58:21.
runpy.py File 10413 bytes April 17 2024 16:58:14.
sched.py File 6399 bytes April 17 2024 16:58:19.
shelve.py File 8243 bytes April 17 2024 16:58:20.
shlex.py File 11502 bytes April 17 2024 16:58:21.
shutil.py File 39147 bytes April 17 2024 16:58:20.
site.py File 21971 bytes April 17 2024 16:58:19.
smtpd.py File 30207 bytes April 17 2024 16:58:16.
smtplib.py File 38021 bytes April 17 2024 16:58:14.
sndhdr.py File 6219 bytes April 17 2024 16:58:20.
socket.py File 14913 bytes April 17 2024 16:58:20.
socketserver.py File 24196 bytes April 17 2024 16:58:21.
sre_compile.py File 16345 bytes April 17 2024 16:58:14.
sre_constants.py File 7231 bytes April 17 2024 16:58:14.
sre_parse.py File 30212 bytes April 17 2024 16:58:16.
ssl.py File 24478 bytes April 17 2024 16:58:19.
stat.py File 4304 bytes April 17 2024 16:58:19.
string.py File 9410 bytes April 17 2024 16:58:20.
stringprep.py File 12917 bytes April 17 2024 16:58:17.
struct.py File 238 bytes April 17 2024 16:58:16.
subprocess.py File 67578 bytes April 17 2024 16:58:14.
sunau.py File 17523 bytes April 17 2024 16:58:15.
symbol.py File 2051 bytes April 17 2024 16:58:14.
symtable.py File 7383 bytes April 17 2024 16:58:20.
sysconfig.py File 25174 bytes April 17 2024 16:58:20.
tabnanny.py File 11410 bytes April 17 2024 16:58:20.
tarfile.py File 88864 bytes April 17 2024 16:58:15.
telnetlib.py File 27349 bytes April 17 2024 16:58:15.
tempfile.py File 23013 bytes April 17 2024 16:58:14.
textwrap.py File 16488 bytes April 17 2024 16:58:14.
this.py File 1003 bytes April 17 2024 16:58:17.
threading.py File 45641 bytes April 17 2024 16:58:19.
timeit.py File 12395 bytes April 17 2024 16:58:15.
token.py File 3034 bytes April 17 2024 16:58:14.
tokenize.py File 24876 bytes April 17 2024 16:58:20.
trace.py File 31487 bytes April 17 2024 16:58:13.
traceback.py File 11982 bytes April 17 2024 16:58:20.
tty.py File 879 bytes April 17 2024 16:58:13.
types.py File 3167 bytes April 17 2024 16:58:14.
uu.py File 6766 bytes April 17 2024 16:58:14.
uuid.py File 22349 bytes April 17 2024 16:58:15.
warnings.py File 13825 bytes April 17 2024 16:58:15.
wave.py File 18579 bytes April 17 2024 16:58:15.
weakref.py File 11495 bytes April 17 2024 16:58:19.
webbrowser.py File 22913 bytes April 17 2024 16:58:20.
xdrlib.py File 5381 bytes April 17 2024 16:58:21.
zipfile.py File 66424 bytes April 17 2024 16:58:21.

Reading File: //opt/alt/python33/lib64//python3.3//socketserver.py

"""Generic socket server classes.

This module tries to capture the various aspects of defining a server:

For socket-based servers:

- address family:
        - AF_INET{,6}: IP (Internet Protocol) sockets (default)
        - AF_UNIX: Unix domain sockets
        - others, e.g. AF_DECNET are conceivable (see <socket.h>
- socket type:
        - SOCK_STREAM (reliable stream, e.g. TCP)
        - SOCK_DGRAM (datagrams, e.g. UDP)

For request-based servers (including socket-based):

- client address verification before further looking at the request
        (This is actually a hook for any processing that needs to look
         at the request before anything else, e.g. logging)
- how to handle multiple requests:
        - synchronous (one request is handled at a time)
        - forking (each request is handled by a new process)
        - threading (each request is handled by a new thread)

The classes in this module favor the server type that is simplest to
write: a synchronous TCP/IP server.  This is bad class design, but
save some typing.  (There's also the issue that a deep class hierarchy
slows down method lookups.)

There are five classes in an inheritance diagram, four of which represent
synchronous servers of four types:

        +------------+
        | BaseServer |
        +------------+
              |
              v
        +-----------+        +------------------+
        | TCPServer |------->| UnixStreamServer |
        +-----------+        +------------------+
              |
              v
        +-----------+        +--------------------+
        | UDPServer |------->| UnixDatagramServer |
        +-----------+        +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from
UnixStreamServer -- the only difference between an IP and a Unix
stream server is the address family, which is simply repeated in both
unix server classes.

Forking and threading versions of each type of server can be created
using the ForkingMixIn and ThreadingMixIn mix-in classes.  For
instance, a threading UDP server class is created as follows:

        class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

The Mix-in class must come first, since it overrides a method defined
in UDPServer! Setting the various member variables also changes
the behavior of the underlying server mechanism.

To implement a service, you must derive a class from
BaseRequestHandler and redefine its handle() method.  You can then run
various versions of the service by combining one of the server classes
with your request handler class.

The request handler class must be different for datagram or stream
services.  This can be hidden by using the request handler
subclasses StreamRequestHandler or DatagramRequestHandler.

Of course, you still have to use your head!

For instance, it makes no sense to use a forking server if the service
contains state in memory that can be modified by requests (since the
modifications in the child process would never reach the initial state
kept in the parent process and passed to each child).  In this case,
you can use a threading server, but you will probably have to use
locks to avoid two requests that come in nearly simultaneous to apply
conflicting changes to the server state.

On the other hand, if you are building e.g. an HTTP server, where all
data is stored externally (e.g. in the file system), a synchronous
class will essentially render the service "deaf" while one request is
being handled -- which may be for a very long time if a client is slow
to read all the data it has requested.  Here a threading or forking
server is appropriate.

In some cases, it may be appropriate to process part of a request
synchronously, but to finish processing in a forked child depending on
the request data.  This can be implemented by using a synchronous
server and doing an explicit fork in the request handler class
handle() method.

Another approach to handling multiple simultaneous requests in an
environment that supports neither threads nor fork (or where these are
too expensive or inappropriate for the service) is to maintain an
explicit table of partially finished requests and to use select() to
decide which request to work on next (or whether to handle a new
incoming request).  This is particularly important for stream services
where each client can potentially be connected for a long time (if
threads or subprocesses cannot be used).

Future work:
- Standard classes for Sun RPC (which uses either UDP or TCP)
- Standard mix-in classes to implement various authentication
  and encryption schemes
- Standard framework for select-based multiplexing

XXX Open problems:
- What to do with out-of-band data?

BaseServer:
- split generic "request" functionality out into BaseServer class.
  Copyright (C) 2000  Luke Kenneth Casson Leighton <lkcl@samba.org>

  example: read entries from a SQL database (requires overriding
  get_request() to return a table entry from the database).
  entry is processed by a RequestHandlerClass.

"""

# Author of the BaseServer patch: Luke Kenneth Casson Leighton

# XXX Warning!
# There is a test suite for this module, but it cannot be run by the
# standard regression test.
# To run it manually, run Lib/test/test_socketserver.py.

__version__ = "0.4"


import socket
import select
import sys
import os
import errno
try:
    import threading
except ImportError:
    import dummy_threading as threading

__all__ = ["TCPServer","UDPServer","ForkingUDPServer","ForkingTCPServer",
           "ThreadingUDPServer","ThreadingTCPServer","BaseRequestHandler",
           "StreamRequestHandler","DatagramRequestHandler",
           "ThreadingMixIn", "ForkingMixIn"]
if hasattr(socket, "AF_UNIX"):
    __all__.extend(["UnixStreamServer","UnixDatagramServer",
                    "ThreadingUnixStreamServer",
                    "ThreadingUnixDatagramServer"])

def _eintr_retry(func, *args):
    """restart a system call interrupted by EINTR"""
    while True:
        try:
            return func(*args)
        except OSError as e:
            if e.errno != errno.EINTR:
                raise

class BaseServer:

    """Base class for server classes.

    Methods for the caller:

    - __init__(server_address, RequestHandlerClass)
    - serve_forever(poll_interval=0.5)
    - shutdown()
    - handle_request()  # if you do not use serve_forever()
    - fileno() -> int   # for select()

    Methods that may be overridden:

    - server_bind()
    - server_activate()
    - get_request() -> request, client_address
    - handle_timeout()
    - verify_request(request, client_address)
    - server_close()
    - process_request(request, client_address)
    - shutdown_request(request)
    - close_request(request)
    - service_actions()
    - handle_error()

    Methods for derived classes:

    - finish_request(request, client_address)

    Class variables that may be overridden by derived classes or
    instances:

    - timeout
    - address_family
    - socket_type
    - allow_reuse_address

    Instance variables:

    - RequestHandlerClass
    - socket

    """

    timeout = None

    def __init__(self, server_address, RequestHandlerClass):
        """Constructor.  May be extended, do not override."""
        self.server_address = server_address
        self.RequestHandlerClass = RequestHandlerClass
        self.__is_shut_down = threading.Event()
        self.__shutdown_request = False

    def server_activate(self):
        """Called by constructor to activate the server.

        May be overridden.

        """
        pass

    def serve_forever(self, poll_interval=0.5):
        """Handle one request at a time until shutdown.

        Polls for shutdown every poll_interval seconds. Ignores
        self.timeout. If you need to do periodic tasks, do them in
        another thread.
        """
        self.__is_shut_down.clear()
        try:
            while not self.__shutdown_request:
                # XXX: Consider using another file descriptor or
                # connecting to the socket to wake this up instead of
                # polling. Polling reduces our responsiveness to a
                # shutdown request and wastes cpu at all other times.
                r, w, e = _eintr_retry(select.select, [self], [], [],
                                       poll_interval)
                if self in r:
                    self._handle_request_noblock()

                self.service_actions()
        finally:
            self.__shutdown_request = False
            self.__is_shut_down.set()

    def shutdown(self):
        """Stops the serve_forever loop.

        Blocks until the loop has finished. This must be called while
        serve_forever() is running in another thread, or it will
        deadlock.
        """
        self.__shutdown_request = True
        self.__is_shut_down.wait()

    def service_actions(self):
        """Called by the serve_forever() loop.

        May be overridden by a subclass / Mixin to implement any code that
        needs to be run during the loop.
        """
        pass

    # The distinction between handling, getting, processing and
    # finishing a request is fairly arbitrary.  Remember:
    #
    # - handle_request() is the top-level call.  It calls
    #   select, get_request(), verify_request() and process_request()
    # - get_request() is different for stream or datagram sockets
    # - process_request() is the place that may fork a new process
    #   or create a new thread to finish the request
    # - finish_request() instantiates the request handler class;
    #   this constructor will handle the request all by itself

    def handle_request(self):
        """Handle one request, possibly blocking.

        Respects self.timeout.
        """
        # Support people who used socket.settimeout() to escape
        # handle_request before self.timeout was available.
        timeout = self.socket.gettimeout()
        if timeout is None:
            timeout = self.timeout
        elif self.timeout is not None:
            timeout = min(timeout, self.timeout)
        fd_sets = _eintr_retry(select.select, [self], [], [], timeout)
        if not fd_sets[0]:
            self.handle_timeout()
            return
        self._handle_request_noblock()

    def _handle_request_noblock(self):
        """Handle one request, without blocking.

        I assume that select.select has returned that the socket is
        readable before this function was called, so there should be
        no risk of blocking in get_request().
        """
        try:
            request, client_address = self.get_request()
        except socket.error:
            return
        if self.verify_request(request, client_address):
            try:
                self.process_request(request, client_address)
            except:
                self.handle_error(request, client_address)
                self.shutdown_request(request)

    def handle_timeout(self):
        """Called if no new request arrives within self.timeout.

        Overridden by ForkingMixIn.
        """
        pass

    def verify_request(self, request, client_address):
        """Verify the request.  May be overridden.

        Return True if we should proceed with this request.

        """
        return True

    def process_request(self, request, client_address):
        """Call finish_request.

        Overridden by ForkingMixIn and ThreadingMixIn.

        """
        self.finish_request(request, client_address)
        self.shutdown_request(request)

    def server_close(self):
        """Called to clean-up the server.

        May be overridden.

        """
        pass

    def finish_request(self, request, client_address):
        """Finish one request by instantiating RequestHandlerClass."""
        self.RequestHandlerClass(request, client_address, self)

    def shutdown_request(self, request):
        """Called to shutdown and close an individual request."""
        self.close_request(request)

    def close_request(self, request):
        """Called to clean up an individual request."""
        pass

    def handle_error(self, request, client_address):
        """Handle an error gracefully.  May be overridden.

        The default is to print a traceback and continue.

        """
        print('-'*40)
        print('Exception happened during processing of request from', end=' ')
        print(client_address)
        import traceback
        traceback.print_exc() # XXX But this goes to stderr!
        print('-'*40)


class TCPServer(BaseServer):

    """Base class for various socket-based server classes.

    Defaults to synchronous IP stream (i.e., TCP).

    Methods for the caller:

    - __init__(server_address, RequestHandlerClass, bind_and_activate=True)
    - serve_forever(poll_interval=0.5)
    - shutdown()
    - handle_request()  # if you don't use serve_forever()
    - fileno() -> int   # for select()

    Methods that may be overridden:

    - server_bind()
    - server_activate()
    - get_request() -> request, client_address
    - handle_timeout()
    - verify_request(request, client_address)
    - process_request(request, client_address)
    - shutdown_request(request)
    - close_request(request)
    - handle_error()

    Methods for derived classes:

    - finish_request(request, client_address)

    Class variables that may be overridden by derived classes or
    instances:

    - timeout
    - address_family
    - socket_type
    - request_queue_size (only for stream sockets)
    - allow_reuse_address

    Instance variables:

    - server_address
    - RequestHandlerClass
    - socket

    """

    address_family = socket.AF_INET

    socket_type = socket.SOCK_STREAM

    request_queue_size = 5

    allow_reuse_address = False

    def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True):
        """Constructor.  May be extended, do not override."""
        BaseServer.__init__(self, server_address, RequestHandlerClass)
        self.socket = socket.socket(self.address_family,
                                    self.socket_type)
        if bind_and_activate:
            self.server_bind()
            self.server_activate()

    def server_bind(self):
        """Called by constructor to bind the socket.

        May be overridden.

        """
        if self.allow_reuse_address:
            self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
        self.socket.bind(self.server_address)
        self.server_address = self.socket.getsockname()

    def server_activate(self):
        """Called by constructor to activate the server.

        May be overridden.

        """
        self.socket.listen(self.request_queue_size)

    def server_close(self):
        """Called to clean-up the server.

        May be overridden.

        """
        self.socket.close()

    def fileno(self):
        """Return socket file number.

        Interface required by select().

        """
        return self.socket.fileno()

    def get_request(self):
        """Get the request and client address from the socket.

        May be overridden.

        """
        return self.socket.accept()

    def shutdown_request(self, request):
        """Called to shutdown and close an individual request."""
        try:
            #explicitly shutdown.  socket.close() merely releases
            #the socket and waits for GC to perform the actual close.
            request.shutdown(socket.SHUT_WR)
        except socket.error:
            pass #some platforms may raise ENOTCONN here
        self.close_request(request)

    def close_request(self, request):
        """Called to clean up an individual request."""
        request.close()


class UDPServer(TCPServer):

    """UDP server class."""

    allow_reuse_address = False

    socket_type = socket.SOCK_DGRAM

    max_packet_size = 8192

    def get_request(self):
        data, client_addr = self.socket.recvfrom(self.max_packet_size)
        return (data, self.socket), client_addr

    def server_activate(self):
        # No need to call listen() for UDP.
        pass

    def shutdown_request(self, request):
        # No need to shutdown anything.
        self.close_request(request)

    def close_request(self, request):
        # No need to close anything.
        pass

class ForkingMixIn:

    """Mix-in class to handle each request in a new process."""

    timeout = 300
    active_children = None
    max_children = 40

    def collect_children(self):
        """Internal routine to wait for children that have exited."""
        if self.active_children is None: return
        while len(self.active_children) >= self.max_children:
            # XXX: This will wait for any child process, not just ones
            # spawned by this library. This could confuse other
            # libraries that expect to be able to wait for their own
            # children.
            try:
                pid, status = os.waitpid(0, 0)
            except os.error:
                pid = None
            if pid not in self.active_children: continue
            self.active_children.remove(pid)

        # XXX: This loop runs more system calls than it ought
        # to. There should be a way to put the active_children into a
        # process group and then use os.waitpid(-pgid) to wait for any
        # of that set, but I couldn't find a way to allocate pgids
        # that couldn't collide.
        for child in self.active_children:
            try:
                pid, status = os.waitpid(child, os.WNOHANG)
            except os.error:
                pid = None
            if not pid: continue
            try:
                self.active_children.remove(pid)
            except ValueError as e:
                raise ValueError('%s. x=%d and list=%r' % (e.message, pid,
                                                           self.active_children))

    def handle_timeout(self):
        """Wait for zombies after self.timeout seconds of inactivity.

        May be extended, do not override.
        """
        self.collect_children()

    def service_actions(self):
        """Collect the zombie child processes regularly in the ForkingMixIn.

        service_actions is called in the BaseServer's serve_forver loop.
        """
        self.collect_children()

    def process_request(self, request, client_address):
        """Fork a new subprocess to process the request."""
        pid = os.fork()
        if pid:
            # Parent process
            if self.active_children is None:
                self.active_children = []
            self.active_children.append(pid)
            self.close_request(request)
            return
        else:
            # Child process.
            # This must never return, hence os._exit()!
            try:
                self.finish_request(request, client_address)
                self.shutdown_request(request)
                os._exit(0)
            except:
                try:
                    self.handle_error(request, client_address)
                    self.shutdown_request(request)
                finally:
                    os._exit(1)


class ThreadingMixIn:
    """Mix-in class to handle each request in a new thread."""

    # Decides how threads will act upon termination of the
    # main process
    daemon_threads = False

    def process_request_thread(self, request, client_address):
        """Same as in BaseServer but as a thread.

        In addition, exception handling is done here.

        """
        try:
            self.finish_request(request, client_address)
            self.shutdown_request(request)
        except:
            self.handle_error(request, client_address)
            self.shutdown_request(request)

    def process_request(self, request, client_address):
        """Start a new thread to process the request."""
        t = threading.Thread(target = self.process_request_thread,
                             args = (request, client_address))
        t.daemon = self.daemon_threads
        t.start()


class ForkingUDPServer(ForkingMixIn, UDPServer): pass
class ForkingTCPServer(ForkingMixIn, TCPServer): pass

class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass

if hasattr(socket, 'AF_UNIX'):

    class UnixStreamServer(TCPServer):
        address_family = socket.AF_UNIX

    class UnixDatagramServer(UDPServer):
        address_family = socket.AF_UNIX

    class ThreadingUnixStreamServer(ThreadingMixIn, UnixStreamServer): pass

    class ThreadingUnixDatagramServer(ThreadingMixIn, UnixDatagramServer): pass

class BaseRequestHandler:

    """Base class for request handler classes.

    This class is instantiated for each request to be handled.  The
    constructor sets the instance variables request, client_address
    and server, and then calls the handle() method.  To implement a
    specific service, all you need to do is to derive a class which
    defines a handle() method.

    The handle() method can find the request as self.request, the
    client address as self.client_address, and the server (in case it
    needs access to per-server information) as self.server.  Since a
    separate instance is created for each request, the handle() method
    can define arbitrary other instance variariables.

    """

    def __init__(self, request, client_address, server):
        self.request = request
        self.client_address = client_address
        self.server = server
        self.setup()
        try:
            self.handle()
        finally:
            self.finish()

    def setup(self):
        pass

    def handle(self):
        pass

    def finish(self):
        pass


# The following two classes make it possible to use the same service
# class for stream or datagram servers.
# Each class sets up these instance variables:
# - rfile: a file object from which receives the request is read
# - wfile: a file object to which the reply is written
# When the handle() method returns, wfile is flushed properly


class StreamRequestHandler(BaseRequestHandler):

    """Define self.rfile and self.wfile for stream sockets."""

    # Default buffer sizes for rfile, wfile.
    # We default rfile to buffered because otherwise it could be
    # really slow for large data (a getc() call per byte); we make
    # wfile unbuffered because (a) often after a write() we want to
    # read and we need to flush the line; (b) big writes to unbuffered
    # files are typically optimized by stdio even when big reads
    # aren't.
    rbufsize = -1
    wbufsize = 0

    # A timeout to apply to the request socket, if not None.
    timeout = None

    # Disable nagle algorithm for this socket, if True.
    # Use only when wbufsize != 0, to avoid small packets.
    disable_nagle_algorithm = False

    def setup(self):
        self.connection = self.request
        if self.timeout is not None:
            self.connection.settimeout(self.timeout)
        if self.disable_nagle_algorithm:
            self.connection.setsockopt(socket.IPPROTO_TCP,
                                       socket.TCP_NODELAY, True)
        self.rfile = self.connection.makefile('rb', self.rbufsize)
        self.wfile = self.connection.makefile('wb', self.wbufsize)

    def finish(self):
        if not self.wfile.closed:
            try:
                self.wfile.flush()
            except socket.error:
                # An final socket error may have occurred here, such as
                # the local error ECONNABORTED.
                pass
        self.wfile.close()
        self.rfile.close()


class DatagramRequestHandler(BaseRequestHandler):

    # XXX Regrettably, I cannot get this working on Linux;
    # s.recvfrom() doesn't return a meaningful client address.

    """Define self.rfile and self.wfile for datagram sockets."""

    def setup(self):
        from io import BytesIO
        self.packet, self.socket = self.request
        self.rfile = BytesIO(self.packet)
        self.wfile = BytesIO()

    def finish(self):
        self.socket.sendto(self.wfile.getvalue(), self.client_address)

SILENT KILLER Tool