SILENT KILLERPanel

Current Path: > > opt > alt > python34 > lib64 > python3.4


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/alt/python34/lib64/python3.4

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.4m Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
idlelib Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
plat-linux Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
test Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
__future__.py File 4584 bytes April 17 2024 17:10:02.
__phello__.foo.py File 64 bytes April 17 2024 17:10:01.
_bootlocale.py File 1301 bytes April 17 2024 17:09:57.
_collections_abc.py File 19898 bytes April 17 2024 17:09:57.
_compat_pickle.py File 8318 bytes April 17 2024 17:10:00.
_dummy_thread.py File 4872 bytes April 17 2024 17:10:01.
_markupbase.py File 14598 bytes April 17 2024 17:09:57.
_osx_support.py File 19101 bytes April 17 2024 17:10:01.
_pyio.py File 73893 bytes April 17 2024 17:09:58.
_sitebuiltins.py File 3115 bytes April 17 2024 17:09:58.
_strptime.py File 22053 bytes April 17 2024 17:10:02.
_sysconfigdata.py File 28728 bytes April 17 2024 17:10:01.
_threading_local.py File 7410 bytes April 17 2024 17:09:57.
_weakrefset.py File 5705 bytes April 17 2024 17:09:57.
abc.py File 8624 bytes April 17 2024 17:09:57.
aifc.py File 31578 bytes April 17 2024 17:10:02.
antigravity.py File 475 bytes April 17 2024 17:09:57.
argparse.py File 90027 bytes April 17 2024 17:10:01.
ast.py File 12034 bytes April 17 2024 17:10:01.
asynchat.py File 11825 bytes April 17 2024 17:10:00.
asyncore.py File 20998 bytes April 17 2024 17:10:02.
base64.py File 20180 bytes April 17 2024 17:09:57.
bdb.py File 23354 bytes April 17 2024 17:10:00.
binhex.py File 13928 bytes April 17 2024 17:09:57.
bisect.py File 2595 bytes April 17 2024 17:09:57.
bz2.py File 18860 bytes April 17 2024 17:10:01.
cProfile.py File 5324 bytes April 17 2024 17:09:57.
calendar.py File 22941 bytes April 17 2024 17:10:01.
cgi.py File 35941 bytes April 17 2024 17:10:01.
cgitb.py File 12041 bytes April 17 2024 17:10:02.
chunk.py File 5425 bytes April 17 2024 17:09:58.
cmd.py File 14860 bytes April 17 2024 17:09:57.
code.py File 10037 bytes April 17 2024 17:09:57.
codecs.py File 35910 bytes April 17 2024 17:09:57.
codeop.py File 5994 bytes April 17 2024 17:09:57.
colorsys.py File 4064 bytes April 17 2024 17:09:57.
compileall.py File 9618 bytes April 17 2024 17:09:57.
configparser.py File 49698 bytes April 17 2024 17:09:57.
contextlib.py File 11639 bytes April 17 2024 17:09:57.
copy.py File 9005 bytes April 17 2024 17:09:57.
copyreg.py File 6833 bytes April 17 2024 17:10:01.
crypt.py File 1879 bytes April 17 2024 17:09:57.
csv.py File 16185 bytes April 17 2024 17:09:57.
datetime.py File 75804 bytes April 17 2024 17:10:02.
decimal.py File 228688 bytes April 17 2024 17:10:00.
difflib.py File 81684 bytes April 17 2024 17:09:57.
dis.py File 17160 bytes April 17 2024 17:09:57.
doctest.py File 104492 bytes April 17 2024 17:09:57.
dummy_threading.py File 2815 bytes April 17 2024 17:09:57.
enum.py File 21538 bytes April 17 2024 17:09:57.
filecmp.py File 9830 bytes April 17 2024 17:09:57.
fileinput.py File 14865 bytes April 17 2024 17:09:57.
fnmatch.py File 3163 bytes April 17 2024 17:09:57.
formatter.py File 15173 bytes April 17 2024 17:09:57.
fractions.py File 23203 bytes April 17 2024 17:09:57.
ftplib.py File 38532 bytes April 17 2024 17:09:57.
functools.py File 28511 bytes April 17 2024 17:10:02.
genericpath.py File 3882 bytes April 17 2024 17:10:02.
getopt.py File 7489 bytes April 17 2024 17:10:01.
getpass.py File 6069 bytes April 17 2024 17:09:57.
gettext.py File 20767 bytes April 17 2024 17:10:01.
glob.py File 3461 bytes April 17 2024 17:09:57.
gzip.py File 24314 bytes April 17 2024 17:10:01.
hashlib.py File 9850 bytes April 17 2024 17:10:02.
heapq.py File 17997 bytes April 17 2024 17:09:57.
hmac.py File 5063 bytes April 17 2024 17:09:58.
imaplib.py File 50267 bytes April 17 2024 17:10:01.
imghdr.py File 3528 bytes April 17 2024 17:10:01.
imp.py File 9984 bytes April 17 2024 17:09:57.
inspect.py File 104640 bytes April 17 2024 17:10:00.
io.py File 3396 bytes April 17 2024 17:09:57.
ipaddress.py File 71598 bytes April 17 2024 17:10:01.
keyword.py File 2222 bytes April 17 2024 17:10:01.
linecache.py File 3953 bytes April 17 2024 17:09:57.
locale.py File 74530 bytes April 17 2024 17:10:00.
lzma.py File 19371 bytes April 17 2024 17:10:02.
macpath.py File 5619 bytes April 17 2024 17:09:57.
macurl2path.py File 2732 bytes April 17 2024 17:09:57.
mailbox.py File 78382 bytes April 17 2024 17:10:00.
mailcap.py File 7437 bytes April 17 2024 17:09:57.
mimetypes.py File 20781 bytes April 17 2024 17:10:00.
modulefinder.py File 23421 bytes April 17 2024 17:09:57.
netrc.py File 5748 bytes April 17 2024 17:09:58.
nntplib.py File 43082 bytes April 17 2024 17:09:57.
ntpath.py File 20477 bytes April 17 2024 17:09:57.
nturl2path.py File 2444 bytes April 17 2024 17:10:01.
numbers.py File 10243 bytes April 17 2024 17:10:02.
opcode.py File 5442 bytes April 17 2024 17:10:02.
operator.py File 9195 bytes April 17 2024 17:10:00.
optparse.py File 60346 bytes April 17 2024 17:10:01.
os.py File 33882 bytes April 17 2024 17:09:57.
pathlib.py File 42467 bytes April 17 2024 17:10:00.
pdb.py File 60992 bytes April 17 2024 17:09:57.
pickle.py File 55989 bytes April 17 2024 17:09:58.
pickletools.py File 91762 bytes April 17 2024 17:09:57.
pipes.py File 8916 bytes April 17 2024 17:10:01.
pkgutil.py File 21215 bytes April 17 2024 17:09:57.
platform.py File 46761 bytes April 17 2024 17:09:57.
plistlib.py File 31791 bytes April 17 2024 17:09:57.
poplib.py File 14319 bytes April 17 2024 17:09:57.
posixpath.py File 13448 bytes April 17 2024 17:09:57.
pprint.py File 14919 bytes April 17 2024 17:09:57.
profile.py File 22032 bytes April 17 2024 17:09:57.
pstats.py File 26316 bytes April 17 2024 17:09:57.
pty.py File 4763 bytes April 17 2024 17:09:57.
py_compile.py File 7103 bytes April 17 2024 17:10:00.
pyclbr.py File 13520 bytes April 17 2024 17:09:57.
pydoc.py File 103011 bytes April 17 2024 17:09:57.
queue.py File 8835 bytes April 17 2024 17:10:01.
quopri.py File 7265 bytes April 17 2024 17:10:01.
random.py File 26084 bytes April 17 2024 17:09:57.
re.py File 15604 bytes April 17 2024 17:09:57.
reprlib.py File 5110 bytes April 17 2024 17:09:57.
rlcompleter.py File 6069 bytes April 17 2024 17:10:02.
runpy.py File 10816 bytes April 17 2024 17:09:57.
sched.py File 6354 bytes April 17 2024 17:10:00.
selectors.py File 17097 bytes April 17 2024 17:09:57.
shelve.py File 8528 bytes April 17 2024 17:10:01.
shlex.py File 11548 bytes April 17 2024 17:10:02.
shutil.py File 39902 bytes April 17 2024 17:10:01.
site.py File 21553 bytes April 17 2024 17:10:00.
smtpd.py File 29991 bytes April 17 2024 17:09:57.
smtplib.py File 38971 bytes April 17 2024 17:09:57.
sndhdr.py File 6256 bytes April 17 2024 17:10:01.
socket.py File 19067 bytes April 17 2024 17:10:02.
socketserver.py File 24372 bytes April 17 2024 17:10:02.
sre_compile.py File 19903 bytes April 17 2024 17:09:57.
sre_constants.py File 7267 bytes April 17 2024 17:09:57.
sre_parse.py File 31429 bytes April 17 2024 17:09:57.
ssl.py File 34747 bytes April 17 2024 17:10:00.
stat.py File 4400 bytes April 17 2024 17:10:00.
statistics.py File 19556 bytes April 17 2024 17:09:57.
string.py File 11445 bytes April 17 2024 17:10:01.
stringprep.py File 12917 bytes April 17 2024 17:09:58.
struct.py File 257 bytes April 17 2024 17:09:57.
subprocess.py File 64549 bytes April 17 2024 17:09:57.
sunau.py File 18095 bytes April 17 2024 17:09:57.
symbol.py File 2053 bytes April 17 2024 17:09:57.
symtable.py File 7404 bytes April 17 2024 17:10:01.
sysconfig.py File 24632 bytes April 17 2024 17:10:01.
tabnanny.py File 11410 bytes April 17 2024 17:10:01.
tarfile.py File 91557 bytes April 17 2024 17:09:57.
telnetlib.py File 23074 bytes April 17 2024 17:09:57.
tempfile.py File 22525 bytes April 17 2024 17:09:57.
textwrap.py File 19282 bytes April 17 2024 17:09:57.
this.py File 1003 bytes April 17 2024 17:09:58.
threading.py File 48802 bytes April 17 2024 17:10:00.
timeit.py File 11972 bytes April 17 2024 17:09:57.
token.py File 3034 bytes April 17 2024 17:09:57.
tokenize.py File 25596 bytes April 17 2024 17:10:01.
trace.py File 31487 bytes April 17 2024 17:09:57.
traceback.py File 11167 bytes April 17 2024 17:10:01.
tracemalloc.py File 15651 bytes April 17 2024 17:10:01.
tty.py File 879 bytes April 17 2024 17:09:57.
types.py File 5411 bytes April 17 2024 17:09:57.
uu.py File 6766 bytes April 17 2024 17:09:57.
uuid.py File 23724 bytes April 17 2024 17:09:57.
warnings.py File 14303 bytes April 17 2024 17:09:57.
wave.py File 17682 bytes April 17 2024 17:09:57.
weakref.py File 19384 bytes April 17 2024 17:10:00.
webbrowser.py File 21432 bytes April 17 2024 17:10:01.
xdrlib.py File 5913 bytes April 17 2024 17:10:02.
zipfile.py File 68547 bytes April 17 2024 17:10:02.

Reading File: //opt/alt/python34/lib64/python3.4/random.py

"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from _collections_abc import Set as _Set, Sequence as _Sequence
from hashlib import sha512 as _sha512

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate", "getrandbits",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), and setstate().
    Optionally, implement a getrandbits() method so that randrange()
    can cover arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def seed(self, a=None, version=2):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1, the hash() of *a* is used instead.

        If *a* is an int, all bits are used.

        """

        if a is None:
            try:
                # Seed with enough bytes to span the 19937 bit
                # state space for the Mersenne Twister
                a = int.from_bytes(_urandom(2500), 'big')
            except NotImplementedError:
                import time
                a = int(time.time() * 256) # use fractional seconds

        if version == 2:
            if isinstance(a, (str, bytes, bytearray)):
                if isinstance(a, str):
                    a = a.encode()
                a += _sha512(a).digest()
                a = int.from_bytes(a, 'big')

        super().seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super().getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super().setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple(x % (2**32) for x in internalstate)
            except ValueError as e:
                raise TypeError from e
            super().setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
    # longer called; we leave it here because it has been here since random was
    # rewritten back in 2001 and why risk breaking something.
    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError("non-integer arg 1 for randrange()")
        if stop is None:
            if istart > 0:
                return self._randbelow(istart)
            raise ValueError("empty range for randrange()")

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError("non-integer stop for randrange()")
        width = istop - istart
        if step == 1 and width > 0:
            return istart + self._randbelow(width)
        if step == 1:
            raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError("non-integer step for randrange()")
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError("zero step for randrange()")

        if n <= 0:
            raise ValueError("empty range for randrange()")

        return istart + istep*self._randbelow(n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
                   Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
        "Return a random int in the range [0,n).  Raises ValueError if n==0."

        random = self.random
        getrandbits = self.getrandbits
        # Only call self.getrandbits if the original random() builtin method
        # has not been overridden or if a new getrandbits() was supplied.
        if type(random) is BuiltinMethod or type(getrandbits) is Method:
            k = n.bit_length()  # don't use (n-1) here because n can be 1
            r = getrandbits(k)          # 0 <= r < 2**k
            while r >= n:
                r = getrandbits(k)
            return r
        # There's an overriden random() method but no new getrandbits() method,
        # so we can only use random() from here.
        if n >= maxsize:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large.\n"
                "To remove the range limitation, add a getrandbits() method.")
            return int(random() * n)
        rem = maxsize % n
        limit = (maxsize - rem) / maxsize   # int(limit * maxsize) % n == 0
        r = random()
        while r >= limit:
            r = random()
        return int(r*maxsize) % n

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        try:
            i = self._randbelow(len(seq))
        except ValueError:
            raise IndexError('Cannot choose from an empty sequence')
        return seq[i]

    def shuffle(self, x, random=None):
        """Shuffle list x in place, and return None.

        Optional argument random is a 0-argument function returning a
        random float in [0.0, 1.0); if it is the default None, the
        standard random.random will be used.

        """

        if random is None:
            randbelow = self._randbelow
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = randbelow(i+1)
                x[i], x[j] = x[j], x[i]
        else:
            _int = int
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = _int(random() * (i+1))
                x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence or set.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use range as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(range(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        if isinstance(population, _Set):
            population = tuple(population)
        if not isinstance(population, _Sequence):
            raise TypeError("Population must be a sequence or set.  For dicts, use list(d).")
        randbelow = self._randbelow
        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("Sample larger than population")
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize:
            # An n-length list is smaller than a k-length set
            pool = list(population)
            for i in range(k):         # invariant:  non-selected at [0,n-i)
                j = randbelow(n-i)
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            selected = set()
            selected_add = selected.add
            for i in range(k):
                j = randbelow(n)
                while j in selected:
                    j = randbelow(n)
                selected_add(j)
                result[i] = population[j]
        return result

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * (u * c) ** 0.5

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / u ** (1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * (-_log(u)) ** (1.0/beta)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates an int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        if k != int(k):
            raise TypeError('number of bits should be an integer')
        numbytes = (k + 7) // 8                       # bits / 8 and rounded up
        x = int.from_bytes(_urandom(numbytes), 'big')
        return x >> (numbytes * 8 - k)                # trim excess bits

    def seed(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print(n, 'times', func.__name__)
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print(round(t1-t0, 3), 'sec,', end=' ')
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print('avg %g, stddev %g, min %g, max %g' % \
              (avg, stddev, smallest, largest))


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits

if __name__ == '__main__':
    _test()

SILENT KILLER Tool