Current Path: > > opt > alt > python37 > lib64 > > python3.7 >
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
__pycache__ | Directory | - | - | |
asyncio | Directory | - | - | |
collections | Directory | - | - | |
concurrent | Directory | - | - | |
config-3.7m | Directory | - | - | |
ctypes | Directory | - | - | |
curses | Directory | - | - | |
dbm | Directory | - | - | |
distutils | Directory | - | - | |
Directory | - | - | ||
encodings | Directory | - | - | |
ensurepip | Directory | - | - | |
html | Directory | - | - | |
http | Directory | - | - | |
idlelib | Directory | - | - | |
importlib | Directory | - | - | |
json | Directory | - | - | |
lib-dynload | Directory | - | - | |
lib2to3 | Directory | - | - | |
logging | Directory | - | - | |
multiprocessing | Directory | - | - | |
pydoc_data | Directory | - | - | |
site-packages | Directory | - | - | |
sqlite3 | Directory | - | - | |
test | Directory | - | - | |
unittest | Directory | - | - | |
urllib | Directory | - | - | |
venv | Directory | - | - | |
wsgiref | Directory | - | - | |
xml | Directory | - | - | |
xmlrpc | Directory | - | - | |
__future__.py | File | 5101 bytes | April 17 2024 17:36:08. | |
__phello__.foo.py | File | 64 bytes | April 17 2024 17:36:07. | |
_bootlocale.py | File | 1801 bytes | April 17 2024 17:36:03. | |
_collections_abc.py | File | 26424 bytes | April 17 2024 17:36:03. | |
_compat_pickle.py | File | 8749 bytes | April 17 2024 17:36:07. | |
_compression.py | File | 5340 bytes | April 17 2024 17:36:04. | |
_dummy_thread.py | File | 6027 bytes | April 17 2024 17:36:07. | |
_markupbase.py | File | 14598 bytes | April 17 2024 17:36:03. | |
_osx_support.py | File | 19600 bytes | April 17 2024 17:36:07. | |
_py_abc.py | File | 6186 bytes | April 17 2024 17:36:08. | |
_pydecimal.py | File | 228690 bytes | April 17 2024 17:36:03. | |
_pyio.py | File | 91616 bytes | April 17 2024 17:36:04. | |
_sitebuiltins.py | File | 3115 bytes | April 17 2024 17:36:04. | |
_strptime.py | File | 25504 bytes | April 17 2024 17:36:08. | |
_sysconfigdata_dm_linux_x86_64-linux-gnu.py | File | 31329 bytes | April 17 2024 17:36:03. | |
_sysconfigdata_m_linux_x86_64-linux-gnu.py | File | 28600 bytes | April 17 2024 17:36:08. | |
_threading_local.py | File | 7214 bytes | April 17 2024 17:36:03. | |
_weakrefset.py | File | 5679 bytes | April 17 2024 17:36:03. | |
abc.py | File | 5580 bytes | April 17 2024 17:36:03. | |
aifc.py | File | 32814 bytes | April 17 2024 17:36:08. | |
antigravity.py | File | 477 bytes | April 17 2024 17:36:04. | |
argparse.py | File | 95372 bytes | April 17 2024 17:36:07. | |
ast.py | File | 12842 bytes | April 17 2024 17:36:07. | |
asynchat.py | File | 11328 bytes | April 17 2024 17:36:07. | |
asyncore.py | File | 20118 bytes | April 17 2024 17:36:08. | |
base64.py | File | 20393 bytes | April 17 2024 17:36:04. | |
bdb.py | File | 31730 bytes | April 17 2024 17:36:07. | |
binhex.py | File | 13954 bytes | April 17 2024 17:36:03. | |
bisect.py | File | 2557 bytes | April 17 2024 17:36:03. | |
bz2.py | File | 12410 bytes | April 17 2024 17:36:07. | |
cProfile.py | File | 6253 bytes | April 17 2024 17:36:03. | |
calendar.py | File | 24826 bytes | April 17 2024 17:36:07. | |
cgi.py | File | 35050 bytes | April 17 2024 17:36:07. | |
cgitb.py | File | 12018 bytes | April 17 2024 17:36:08. | |
chunk.py | File | 5435 bytes | April 17 2024 17:36:04. | |
cmd.py | File | 14860 bytes | April 17 2024 17:36:03. | |
code.py | File | 10622 bytes | April 17 2024 17:36:04. | |
codecs.py | File | 36615 bytes | April 17 2024 17:36:03. | |
codeop.py | File | 6275 bytes | April 17 2024 17:36:03. | |
colorsys.py | File | 4064 bytes | April 17 2024 17:36:03. | |
compileall.py | File | 13788 bytes | April 17 2024 17:36:03. | |
configparser.py | File | 54283 bytes | April 17 2024 17:36:03. | |
contextlib.py | File | 24763 bytes | April 17 2024 17:36:03. | |
contextvars.py | File | 129 bytes | April 17 2024 17:36:07. | |
copy.py | File | 8856 bytes | April 17 2024 17:36:03. | |
copyreg.py | File | 7017 bytes | April 17 2024 17:36:07. | |
crypt.py | File | 3346 bytes | April 17 2024 17:36:03. | |
csv.py | File | 16180 bytes | April 17 2024 17:36:03. | |
dataclasses.py | File | 49520 bytes | April 17 2024 17:36:07. | |
datetime.py | File | 86544 bytes | April 17 2024 17:36:08. | |
decimal.py | File | 320 bytes | April 17 2024 17:36:07. | |
difflib.py | File | 84393 bytes | April 17 2024 17:36:04. | |
dis.py | File | 19888 bytes | April 17 2024 17:36:03. | |
doctest.py | File | 104560 bytes | April 17 2024 17:36:03. | |
dummy_threading.py | File | 2815 bytes | April 17 2024 17:36:03. | |
enum.py | File | 35043 bytes | April 17 2024 17:36:04. | |
filecmp.py | File | 9830 bytes | April 17 2024 17:36:03. | |
fileinput.py | File | 14625 bytes | April 17 2024 17:36:04. | |
fnmatch.py | File | 4056 bytes | April 17 2024 17:36:03. | |
formatter.py | File | 15143 bytes | April 17 2024 17:36:03. | |
fractions.py | File | 23752 bytes | April 17 2024 17:36:03. | |
ftplib.py | File | 35618 bytes | April 17 2024 17:36:03. | |
functools.py | File | 32932 bytes | April 17 2024 17:36:08. | |
genericpath.py | File | 4912 bytes | April 17 2024 17:36:08. | |
getopt.py | File | 7489 bytes | April 17 2024 17:36:07. | |
getpass.py | File | 5994 bytes | April 17 2024 17:36:03. | |
gettext.py | File | 21967 bytes | April 17 2024 17:36:07. | |
glob.py | File | 5638 bytes | April 17 2024 17:36:03. | |
gzip.py | File | 20637 bytes | April 17 2024 17:36:07. | |
hashlib.py | File | 9534 bytes | April 17 2024 17:36:08. | |
heapq.py | File | 23017 bytes | April 17 2024 17:36:03. | |
hmac.py | File | 6517 bytes | April 17 2024 17:36:04. | |
imaplib.py | File | 53292 bytes | April 17 2024 17:36:07. | |
imghdr.py | File | 3795 bytes | April 17 2024 17:36:07. | |
imp.py | File | 10536 bytes | April 17 2024 17:36:03. | |
inspect.py | File | 117635 bytes | April 17 2024 17:36:07. | |
io.py | File | 3517 bytes | April 17 2024 17:36:03. | |
ipaddress.py | File | 73578 bytes | April 17 2024 17:36:07. | |
keyword.py | File | 2256 bytes | April 17 2024 17:36:07. | |
linecache.py | File | 5330 bytes | April 17 2024 17:36:04. | |
locale.py | File | 78191 bytes | April 17 2024 17:36:07. | |
lzma.py | File | 12983 bytes | April 17 2024 17:36:08. | |
macpath.py | File | 6123 bytes | April 17 2024 17:36:03. | |
mailbox.py | File | 78654 bytes | April 17 2024 17:36:07. | |
mailcap.py | File | 9067 bytes | April 17 2024 17:36:03. | |
mimetypes.py | File | 21496 bytes | April 17 2024 17:36:07. | |
modulefinder.py | File | 23035 bytes | April 17 2024 17:36:03. | |
netrc.py | File | 5566 bytes | April 17 2024 17:36:04. | |
nntplib.py | File | 43087 bytes | April 17 2024 17:36:03. | |
ntpath.py | File | 22340 bytes | April 17 2024 17:36:03. | |
nturl2path.py | File | 2584 bytes | April 17 2024 17:36:07. | |
numbers.py | File | 10244 bytes | April 17 2024 17:36:08. | |
opcode.py | File | 5824 bytes | April 17 2024 17:36:08. | |
operator.py | File | 10863 bytes | April 17 2024 17:36:07. | |
optparse.py | File | 60371 bytes | April 17 2024 17:36:07. | |
os.py | File | 37901 bytes | April 17 2024 17:36:03. | |
pathlib.py | File | 50329 bytes | April 17 2024 17:36:07. | |
pdb.py | File | 62505 bytes | April 17 2024 17:36:04. | |
pickle.py | File | 57994 bytes | April 17 2024 17:36:04. | |
pickletools.py | File | 91220 bytes | April 17 2024 17:36:03. | |
pipes.py | File | 8916 bytes | April 17 2024 17:36:07. | |
pkgutil.py | File | 21461 bytes | April 17 2024 17:36:03. | |
platform.py | File | 46994 bytes | April 17 2024 17:36:03. | |
plistlib.py | File | 30709 bytes | April 17 2024 17:36:03. | |
poplib.py | File | 14964 bytes | April 17 2024 17:36:03. | |
posixpath.py | File | 15771 bytes | April 17 2024 17:36:04. | |
pprint.py | File | 20884 bytes | April 17 2024 17:36:03. | |
profile.py | File | 22494 bytes | April 17 2024 17:36:04. | |
pstats.py | File | 27315 bytes | April 17 2024 17:36:03. | |
pty.py | File | 4763 bytes | April 17 2024 17:36:03. | |
py_compile.py | File | 8001 bytes | April 17 2024 17:36:07. | |
pyclbr.py | File | 15137 bytes | April 17 2024 17:36:03. | |
pydoc.py | File | 105876 bytes | April 17 2024 17:36:03. | |
queue.py | File | 11359 bytes | April 17 2024 17:36:07. | |
quopri.py | File | 7265 bytes | April 17 2024 17:36:07. | |
random.py | File | 27557 bytes | April 17 2024 17:36:03. | |
re.py | File | 15306 bytes | April 17 2024 17:36:04. | |
reprlib.py | File | 5267 bytes | April 17 2024 17:36:03. | |
rlcompleter.py | File | 7097 bytes | April 17 2024 17:36:08. | |
runpy.py | File | 11959 bytes | April 17 2024 17:36:03. | |
sched.py | File | 6442 bytes | April 17 2024 17:36:07. | |
secrets.py | File | 2038 bytes | April 17 2024 17:36:04. | |
selectors.py | File | 18561 bytes | April 17 2024 17:36:03. | |
shelve.py | File | 8527 bytes | April 17 2024 17:36:07. | |
shlex.py | File | 13100 bytes | April 17 2024 17:36:08. | |
shutil.py | File | 41950 bytes | April 17 2024 17:36:07. | |
signal.py | File | 2123 bytes | April 17 2024 17:36:07. | |
site.py | File | 21575 bytes | April 17 2024 17:36:07. | |
smtpd.py | File | 34722 bytes | April 17 2024 17:36:04. | |
smtplib.py | File | 44443 bytes | April 17 2024 17:36:03. | |
sndhdr.py | File | 7086 bytes | April 17 2024 17:36:07. | |
socket.py | File | 27469 bytes | April 17 2024 17:36:08. | |
socketserver.py | File | 26923 bytes | April 17 2024 17:36:08. | |
sre_compile.py | File | 26872 bytes | April 17 2024 17:36:03. | |
sre_constants.py | File | 7177 bytes | April 17 2024 17:36:03. | |
sre_parse.py | File | 39156 bytes | April 17 2024 17:36:04. | |
ssl.py | File | 45495 bytes | April 17 2024 17:36:07. | |
stat.py | File | 5391 bytes | April 17 2024 17:36:07. | |
statistics.py | File | 20651 bytes | April 17 2024 17:36:03. | |
string.py | File | 11564 bytes | April 17 2024 17:36:07. | |
stringprep.py | File | 12917 bytes | April 17 2024 17:36:04. | |
struct.py | File | 257 bytes | April 17 2024 17:36:04. | |
subprocess.py | File | 72649 bytes | April 17 2024 17:36:03. | |
sunau.py | File | 18375 bytes | April 17 2024 17:36:03. | |
symbol.py | File | 2142 bytes | April 17 2024 17:36:03. | |
symtable.py | File | 7279 bytes | April 17 2024 17:36:07. | |
sysconfig.py | File | 24440 bytes | April 17 2024 17:36:07. | |
tabnanny.py | File | 11419 bytes | April 17 2024 17:36:07. | |
tarfile.py | File | 92675 bytes | April 17 2024 17:36:03. | |
telnetlib.py | File | 23135 bytes | April 17 2024 17:36:03. | |
tempfile.py | File | 26730 bytes | April 17 2024 17:36:03. | |
textwrap.py | File | 19407 bytes | April 17 2024 17:36:03. | |
this.py | File | 1003 bytes | April 17 2024 17:36:04. | |
threading.py | File | 49284 bytes | April 17 2024 17:36:07. | |
timeit.py | File | 13493 bytes | April 17 2024 17:36:03. | |
token.py | File | 3763 bytes | April 17 2024 17:36:03. | |
tokenize.py | File | 27031 bytes | April 17 2024 17:36:07. | |
trace.py | File | 28903 bytes | April 17 2024 17:36:03. | |
traceback.py | File | 23437 bytes | April 17 2024 17:36:07. | |
tracemalloc.py | File | 17076 bytes | April 17 2024 17:36:07. | |
tty.py | File | 879 bytes | April 17 2024 17:36:03. | |
types.py | File | 9897 bytes | April 17 2024 17:36:03. | |
typing.py | File | 56438 bytes | April 17 2024 17:36:07. | |
uu.py | File | 7277 bytes | April 17 2024 17:36:03. | |
uuid.py | File | 29518 bytes | April 17 2024 17:36:03. | |
warnings.py | File | 20080 bytes | April 17 2024 17:36:03. | |
wave.py | File | 18230 bytes | April 17 2024 17:36:03. | |
weakref.py | File | 21508 bytes | April 17 2024 17:36:07. | |
webbrowser.py | File | 23715 bytes | April 17 2024 17:36:07. | |
xdrlib.py | File | 5913 bytes | April 17 2024 17:36:08. | |
zipapp.py | File | 7535 bytes | April 17 2024 17:36:03. | |
zipfile.py | File | 81094 bytes | April 17 2024 17:36:08. |
""" Basic statistics module. This module provides functions for calculating statistics of data, including averages, variance, and standard deviation. Calculating averages -------------------- ================== ============================================= Function Description ================== ============================================= mean Arithmetic mean (average) of data. harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. median_grouped Median, or 50th percentile, of grouped data. mode Mode (most common value) of data. ================== ============================================= Calculate the arithmetic mean ("the average") of data: >>> mean([-1.0, 2.5, 3.25, 5.75]) 2.625 Calculate the standard median of discrete data: >>> median([2, 3, 4, 5]) 3.5 Calculate the median, or 50th percentile, of data grouped into class intervals centred on the data values provided. E.g. if your data points are rounded to the nearest whole number: >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS 2.8333333333... This should be interpreted in this way: you have two data points in the class interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in the class interval 3.5-4.5. The median of these data points is 2.8333... Calculating variability or spread --------------------------------- ================== ============================================= Function Description ================== ============================================= pvariance Population variance of data. variance Sample variance of data. pstdev Population standard deviation of data. stdev Sample standard deviation of data. ================== ============================================= Calculate the standard deviation of sample data: >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS 4.38961843444... If you have previously calculated the mean, you can pass it as the optional second argument to the four "spread" functions to avoid recalculating it: >>> data = [1, 2, 2, 4, 4, 4, 5, 6] >>> mu = mean(data) >>> pvariance(data, mu) 2.5 Exceptions ---------- A single exception is defined: StatisticsError is a subclass of ValueError. """ __all__ = [ 'StatisticsError', 'pstdev', 'pvariance', 'stdev', 'variance', 'median', 'median_low', 'median_high', 'median_grouped', 'mean', 'mode', 'harmonic_mean', ] import collections import math import numbers from fractions import Fraction from decimal import Decimal from itertools import groupby from bisect import bisect_left, bisect_right # === Exceptions === class StatisticsError(ValueError): pass # === Private utilities === def _sum(data, start=0): """_sum(data [, start]) -> (type, sum, count) Return a high-precision sum of the given numeric data as a fraction, together with the type to be converted to and the count of items. If optional argument ``start`` is given, it is added to the total. If ``data`` is empty, ``start`` (defaulting to 0) is returned. Examples -------- >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75) (<class 'float'>, Fraction(11, 1), 5) Some sources of round-off error will be avoided: # Built-in sum returns zero. >>> _sum([1e50, 1, -1e50] * 1000) (<class 'float'>, Fraction(1000, 1), 3000) Fractions and Decimals are also supported: >>> from fractions import Fraction as F >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) (<class 'fractions.Fraction'>, Fraction(63, 20), 4) >>> from decimal import Decimal as D >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] >>> _sum(data) (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4) Mixed types are currently treated as an error, except that int is allowed. """ count = 0 n, d = _exact_ratio(start) partials = {d: n} partials_get = partials.get T = _coerce(int, type(start)) for typ, values in groupby(data, type): T = _coerce(T, typ) # or raise TypeError for n,d in map(_exact_ratio, values): count += 1 partials[d] = partials_get(d, 0) + n if None in partials: # The sum will be a NAN or INF. We can ignore all the finite # partials, and just look at this special one. total = partials[None] assert not _isfinite(total) else: # Sum all the partial sums using builtin sum. # FIXME is this faster if we sum them in order of the denominator? total = sum(Fraction(n, d) for d, n in sorted(partials.items())) return (T, total, count) def _isfinite(x): try: return x.is_finite() # Likely a Decimal. except AttributeError: return math.isfinite(x) # Coerces to float first. def _coerce(T, S): """Coerce types T and S to a common type, or raise TypeError. Coercion rules are currently an implementation detail. See the CoerceTest test class in test_statistics for details. """ # See http://bugs.python.org/issue24068. assert T is not bool, "initial type T is bool" # If the types are the same, no need to coerce anything. Put this # first, so that the usual case (no coercion needed) happens as soon # as possible. if T is S: return T # Mixed int & other coerce to the other type. if S is int or S is bool: return T if T is int: return S # If one is a (strict) subclass of the other, coerce to the subclass. if issubclass(S, T): return S if issubclass(T, S): return T # Ints coerce to the other type. if issubclass(T, int): return S if issubclass(S, int): return T # Mixed fraction & float coerces to float (or float subclass). if issubclass(T, Fraction) and issubclass(S, float): return S if issubclass(T, float) and issubclass(S, Fraction): return T # Any other combination is disallowed. msg = "don't know how to coerce %s and %s" raise TypeError(msg % (T.__name__, S.__name__)) def _exact_ratio(x): """Return Real number x to exact (numerator, denominator) pair. >>> _exact_ratio(0.25) (1, 4) x is expected to be an int, Fraction, Decimal or float. """ try: # Optimise the common case of floats. We expect that the most often # used numeric type will be builtin floats, so try to make this as # fast as possible. if type(x) is float or type(x) is Decimal: return x.as_integer_ratio() try: # x may be an int, Fraction, or Integral ABC. return (x.numerator, x.denominator) except AttributeError: try: # x may be a float or Decimal subclass. return x.as_integer_ratio() except AttributeError: # Just give up? pass except (OverflowError, ValueError): # float NAN or INF. assert not _isfinite(x) return (x, None) msg = "can't convert type '{}' to numerator/denominator" raise TypeError(msg.format(type(x).__name__)) def _convert(value, T): """Convert value to given numeric type T.""" if type(value) is T: # This covers the cases where T is Fraction, or where value is # a NAN or INF (Decimal or float). return value if issubclass(T, int) and value.denominator != 1: T = float try: # FIXME: what do we do if this overflows? return T(value) except TypeError: if issubclass(T, Decimal): return T(value.numerator)/T(value.denominator) else: raise def _counts(data): # Generate a table of sorted (value, frequency) pairs. table = collections.Counter(iter(data)).most_common() if not table: return table # Extract the values with the highest frequency. maxfreq = table[0][1] for i in range(1, len(table)): if table[i][1] != maxfreq: table = table[:i] break return table def _find_lteq(a, x): 'Locate the leftmost value exactly equal to x' i = bisect_left(a, x) if i != len(a) and a[i] == x: return i raise ValueError def _find_rteq(a, l, x): 'Locate the rightmost value exactly equal to x' i = bisect_right(a, x, lo=l) if i != (len(a)+1) and a[i-1] == x: return i-1 raise ValueError def _fail_neg(values, errmsg='negative value'): """Iterate over values, failing if any are less than zero.""" for x in values: if x < 0: raise StatisticsError(errmsg) yield x # === Measures of central tendency (averages) === def mean(data): """Return the sample arithmetic mean of data. >>> mean([1, 2, 3, 4, 4]) 2.8 >>> from fractions import Fraction as F >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) Fraction(13, 21) >>> from decimal import Decimal as D >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) Decimal('0.5625') If ``data`` is empty, StatisticsError will be raised. """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('mean requires at least one data point') T, total, count = _sum(data) assert count == n return _convert(total/n, T) def harmonic_mean(data): """Return the harmonic mean of data. The harmonic mean, sometimes called the subcontrary mean, is the reciprocal of the arithmetic mean of the reciprocals of the data, and is often appropriate when averaging quantities which are rates or ratios, for example speeds. Example: Suppose an investor purchases an equal value of shares in each of three companies, with P/E (price/earning) ratios of 2.5, 3 and 10. What is the average P/E ratio for the investor's portfolio? >>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio. 3.6 Using the arithmetic mean would give an average of about 5.167, which is too high. If ``data`` is empty, or any element is less than zero, ``harmonic_mean`` will raise ``StatisticsError``. """ # For a justification for using harmonic mean for P/E ratios, see # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/ # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087 if iter(data) is data: data = list(data) errmsg = 'harmonic mean does not support negative values' n = len(data) if n < 1: raise StatisticsError('harmonic_mean requires at least one data point') elif n == 1: x = data[0] if isinstance(x, (numbers.Real, Decimal)): if x < 0: raise StatisticsError(errmsg) return x else: raise TypeError('unsupported type') try: T, total, count = _sum(1/x for x in _fail_neg(data, errmsg)) except ZeroDivisionError: return 0 assert count == n return _convert(n/total, T) # FIXME: investigate ways to calculate medians without sorting? Quickselect? def median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: i = n//2 return (data[i - 1] + data[i])/2 def median_low(data): """Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. >>> median_low([1, 3, 5]) 3 >>> median_low([1, 3, 5, 7]) 3 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: return data[n//2 - 1] def median_high(data): """Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. >>> median_high([1, 3, 5]) 3 >>> median_high([1, 3, 5, 7]) 5 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") return data[n//2] def median_grouped(data, interval=1): """Return the 50th percentile (median) of grouped continuous data. >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) 3.7 >>> median_grouped([52, 52, 53, 54]) 52.5 This calculates the median as the 50th percentile, and should be used when your data is continuous and grouped. In the above example, the values 1, 2, 3, etc. actually represent the midpoint of classes 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in class 3.5-4.5, and interpolation is used to estimate it. Optional argument ``interval`` represents the class interval, and defaults to 1. Changing the class interval naturally will change the interpolated 50th percentile value: >>> median_grouped([1, 3, 3, 5, 7], interval=1) 3.25 >>> median_grouped([1, 3, 3, 5, 7], interval=2) 3.5 This function does not check whether the data points are at least ``interval`` apart. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") elif n == 1: return data[0] # Find the value at the midpoint. Remember this corresponds to the # centre of the class interval. x = data[n//2] for obj in (x, interval): if isinstance(obj, (str, bytes)): raise TypeError('expected number but got %r' % obj) try: L = x - interval/2 # The lower limit of the median interval. except TypeError: # Mixed type. For now we just coerce to float. L = float(x) - float(interval)/2 # Uses bisection search to search for x in data with log(n) time complexity # Find the position of leftmost occurrence of x in data l1 = _find_lteq(data, x) # Find the position of rightmost occurrence of x in data[l1...len(data)] # Assuming always l1 <= l2 l2 = _find_rteq(data, l1, x) cf = l1 f = l2 - l1 + 1 return L + interval*(n/2 - cf)/f def mode(data): """Return the most common data point from discrete or nominal data. ``mode`` assumes discrete data, and returns a single value. This is the standard treatment of the mode as commonly taught in schools: >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) 3 This also works with nominal (non-numeric) data: >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) 'red' If there is not exactly one most common value, ``mode`` will raise StatisticsError. """ # Generate a table of sorted (value, frequency) pairs. table = _counts(data) if len(table) == 1: return table[0][0] elif table: raise StatisticsError( 'no unique mode; found %d equally common values' % len(table) ) else: raise StatisticsError('no mode for empty data') # === Measures of spread === # See http://mathworld.wolfram.com/Variance.html # http://mathworld.wolfram.com/SampleVariance.html # http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance # # Under no circumstances use the so-called "computational formula for # variance", as that is only suitable for hand calculations with a small # amount of low-precision data. It has terrible numeric properties. # # See a comparison of three computational methods here: # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/ def _ss(data, c=None): """Return sum of square deviations of sequence data. If ``c`` is None, the mean is calculated in one pass, and the deviations from the mean are calculated in a second pass. Otherwise, deviations are calculated from ``c`` as given. Use the second case with care, as it can lead to garbage results. """ if c is None: c = mean(data) T, total, count = _sum((x-c)**2 for x in data) # The following sum should mathematically equal zero, but due to rounding # error may not. U, total2, count2 = _sum((x-c) for x in data) assert T == U and count == count2 total -= total2**2/len(data) assert not total < 0, 'negative sum of square deviations: %f' % total return (T, total) def variance(data, xbar=None): """Return the sample variance of data. data should be an iterable of Real-valued numbers, with at least two values. The optional argument xbar, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function when your data is a sample from a population. To calculate the variance from the entire population, see ``pvariance``. Examples: >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] >>> variance(data) 1.3720238095238095 If you have already calculated the mean of your data, you can pass it as the optional second argument ``xbar`` to avoid recalculating it: >>> m = mean(data) >>> variance(data, m) 1.3720238095238095 This function does not check that ``xbar`` is actually the mean of ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('31.01875') >>> from fractions import Fraction as F >>> variance([F(1, 6), F(1, 2), F(5, 3)]) Fraction(67, 108) """ if iter(data) is data: data = list(data) n = len(data) if n < 2: raise StatisticsError('variance requires at least two data points') T, ss = _ss(data, xbar) return _convert(ss/(n-1), T) def pvariance(data, mu=None): """Return the population variance of ``data``. data should be an iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. Examples: >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] >>> pvariance(data) 1.25 If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: >>> mu = mean(data) >>> pvariance(data, mu) 1.25 This function does not check that ``mu`` is actually the mean of ``data``. Giving arbitrary values for ``mu`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('24.815') >>> from fractions import Fraction as F >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) Fraction(13, 72) """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('pvariance requires at least one data point') T, ss = _ss(data, mu) return _convert(ss/n, T) def stdev(data, xbar=None): """Return the square root of the sample variance. See ``variance`` for arguments and other details. >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 1.0810874155219827 """ var = variance(data, xbar) try: return var.sqrt() except AttributeError: return math.sqrt(var) def pstdev(data, mu=None): """Return the square root of the population variance. See ``pvariance`` for arguments and other details. >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 0.986893273527251 """ var = pvariance(data, mu) try: return var.sqrt() except AttributeError: return math.sqrt(var)
SILENT KILLER Tool