SILENT KILLERPanel

Current Path: > > opt > alt > python38 > lib64 > python3.8


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/alt/python38/lib64/python3.8

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
asyncio Directory - -
collections Directory - -
concurrent Directory - -
config-3.8-x86_64-linux-gnu Directory - -
ctypes Directory - -
curses Directory - -
dbm Directory - -
distutils Directory - -
email Directory - -
encodings Directory - -
ensurepip Directory - -
html Directory - -
http Directory - -
importlib Directory - -
json Directory - -
lib-dynload Directory - -
lib2to3 Directory - -
logging Directory - -
multiprocessing Directory - -
pydoc_data Directory - -
site-packages Directory - -
sqlite3 Directory - -
unittest Directory - -
urllib Directory - -
venv Directory - -
wsgiref Directory - -
xml Directory - -
xmlrpc Directory - -
LICENSE.txt File 13937 bytes September 06 2024 20:41:55.
__future__.py File 5147 bytes September 06 2024 20:41:55.
__phello__.foo.py File 64 bytes September 06 2024 20:41:55.
_bootlocale.py File 1801 bytes September 06 2024 20:41:55.
_collections_abc.py File 26100 bytes September 06 2024 20:41:55.
_compat_pickle.py File 8749 bytes September 06 2024 20:41:55.
_compression.py File 5340 bytes September 06 2024 20:41:55.
_dummy_thread.py File 6027 bytes September 06 2024 20:41:55.
_markupbase.py File 14598 bytes September 06 2024 20:41:55.
_osx_support.py File 21774 bytes September 06 2024 20:41:55.
_py_abc.py File 6189 bytes September 06 2024 20:41:55.
_pydecimal.py File 228666 bytes September 06 2024 20:41:55.
_pyio.py File 93177 bytes September 06 2024 20:41:55.
_sitebuiltins.py File 3115 bytes September 06 2024 20:41:55.
_strptime.py File 25268 bytes September 06 2024 20:41:55.
_sysconfigdata__linux_x86_64-linux-gnu.py File 41679 bytes September 23 2024 11:25:15.
_sysconfigdata_d_linux_x86_64-linux-gnu.py File 41438 bytes September 23 2024 11:17:38.
_threading_local.py File 7220 bytes September 06 2024 20:41:55.
_weakrefset.py File 5735 bytes September 06 2024 20:41:55.
abc.py File 4489 bytes September 06 2024 20:41:55.
aifc.py File 32814 bytes September 06 2024 20:41:55.
antigravity.py File 477 bytes September 06 2024 20:41:55.
argparse.py File 96015 bytes September 06 2024 20:41:55.
ast.py File 19234 bytes September 06 2024 20:41:55.
asynchat.py File 11328 bytes September 06 2024 20:41:55.
asyncore.py File 20094 bytes September 06 2024 20:41:55.
base64.py File 20395 bytes September 06 2024 20:41:55.
bdb.py File 32056 bytes September 06 2024 20:41:55.
binhex.py File 13954 bytes September 06 2024 20:41:55.
bisect.py File 2214 bytes September 06 2024 20:41:55.
bz2.py File 12558 bytes September 06 2024 20:41:55.
cProfile.py File 7023 bytes September 06 2024 20:41:55.
calendar.py File 24832 bytes September 06 2024 20:41:55.
cgi.py File 33945 bytes September 06 2024 20:41:55.
cgitb.py File 12096 bytes September 06 2024 20:41:55.
chunk.py File 5435 bytes September 06 2024 20:41:55.
cmd.py File 14860 bytes September 06 2024 20:41:55.
code.py File 10622 bytes September 06 2024 20:41:55.
codecs.py File 36667 bytes September 06 2024 20:41:55.
codeop.py File 6330 bytes September 06 2024 20:41:55.
colorsys.py File 4064 bytes September 06 2024 20:41:55.
compileall.py File 13678 bytes September 06 2024 20:41:55.
configparser.py File 54374 bytes September 06 2024 20:41:55.
contextlib.py File 24995 bytes September 06 2024 20:41:55.
contextvars.py File 129 bytes September 06 2024 20:41:55.
copy.py File 8661 bytes September 06 2024 20:41:55.
copyreg.py File 7135 bytes September 06 2024 20:41:55.
crypt.py File 3610 bytes September 06 2024 20:41:55.
csv.py File 16144 bytes September 06 2024 20:41:55.
dataclasses.py File 49973 bytes September 06 2024 20:41:55.
datetime.py File 88287 bytes September 06 2024 20:41:55.
decimal.py File 320 bytes September 06 2024 20:41:55.
difflib.py File 84058 bytes September 06 2024 20:41:55.
dis.py File 20570 bytes September 06 2024 20:41:55.
doctest.py File 104543 bytes September 06 2024 20:41:55.
dummy_threading.py File 2815 bytes September 06 2024 20:41:55.
enum.py File 38136 bytes September 06 2024 20:41:55.
filecmp.py File 9830 bytes September 06 2024 20:41:55.
fileinput.py File 14709 bytes September 06 2024 20:41:55.
fnmatch.py File 4079 bytes September 06 2024 20:41:55.
formatter.py File 15143 bytes September 06 2024 20:41:55.
fractions.py File 24329 bytes September 06 2024 20:41:55.
ftplib.py File 35129 bytes September 06 2024 20:41:55.
functools.py File 37406 bytes September 06 2024 20:41:55.
genericpath.py File 4975 bytes September 06 2024 20:41:55.
getopt.py File 7489 bytes September 06 2024 20:41:55.
getpass.py File 5994 bytes September 06 2024 20:41:55.
gettext.py File 27138 bytes September 06 2024 20:41:55.
glob.py File 5697 bytes September 06 2024 20:41:55.
gzip.py File 21413 bytes September 06 2024 20:41:55.
hashlib.py File 9730 bytes September 06 2024 20:41:55.
heapq.py File 22877 bytes September 06 2024 20:41:55.
hmac.py File 6629 bytes September 06 2024 20:41:55.
imaplib.py File 53606 bytes September 06 2024 20:41:55.
imghdr.py File 3808 bytes September 06 2024 20:41:55.
imp.py File 10536 bytes September 06 2024 20:41:55.
inspect.py File 118550 bytes September 06 2024 20:41:55.
io.py File 3541 bytes September 06 2024 20:41:55.
ipaddress.py File 74899 bytes September 06 2024 20:41:55.
keyword.py File 945 bytes September 06 2024 20:41:55.
linecache.py File 5330 bytes September 06 2024 20:41:55.
locale.py File 78191 bytes September 06 2024 20:41:55.
lzma.py File 12983 bytes September 06 2024 20:41:55.
mailbox.py File 78661 bytes September 06 2024 20:41:55.
mailcap.py File 9067 bytes September 06 2024 20:41:55.
mimetypes.py File 21664 bytes September 06 2024 20:41:55.
modulefinder.py File 24430 bytes September 06 2024 20:41:55.
netrc.py File 5566 bytes September 06 2024 20:41:55.
nntplib.py File 43261 bytes September 06 2024 20:41:55.
ntpath.py File 27734 bytes September 06 2024 20:41:55.
nturl2path.py File 2887 bytes September 06 2024 20:41:55.
numbers.py File 10244 bytes September 06 2024 20:41:55.
opcode.py File 5808 bytes September 06 2024 20:41:55.
operator.py File 10711 bytes September 06 2024 20:41:55.
optparse.py File 60369 bytes September 06 2024 20:41:55.
os.py File 38995 bytes September 06 2024 20:41:55.
pathlib.py File 52610 bytes September 06 2024 20:41:55.
pdb.py File 62751 bytes September 06 2024 20:41:55.
pickle.py File 64467 bytes September 06 2024 20:41:55.
pickletools.py File 93486 bytes September 06 2024 20:41:55.
pipes.py File 8916 bytes September 06 2024 20:41:55.
pkgutil.py File 21500 bytes September 06 2024 20:41:55.
platform.py File 40438 bytes September 06 2024 20:41:55.
plistlib.py File 32220 bytes September 06 2024 20:41:55.
poplib.py File 15077 bytes September 06 2024 20:41:55.
posixpath.py File 15627 bytes September 06 2024 20:41:55.
pprint.py File 21484 bytes September 06 2024 20:41:55.
profile.py File 23559 bytes September 06 2024 20:41:55.
pstats.py File 27345 bytes September 06 2024 20:41:55.
pty.py File 4807 bytes September 06 2024 20:41:55.
py_compile.py File 8203 bytes September 23 2024 11:15:42.
pyclbr.py File 15255 bytes September 06 2024 20:41:55.
pydoc.py File 106700 bytes September 23 2024 11:26:08.
queue.py File 11356 bytes September 06 2024 20:41:55.
quopri.py File 7265 bytes September 06 2024 20:41:55.
random.py File 28802 bytes September 06 2024 20:41:55.
re.py File 15861 bytes September 06 2024 20:41:55.
reprlib.py File 5267 bytes September 06 2024 20:41:55.
rlcompleter.py File 7097 bytes September 06 2024 20:41:55.
runpy.py File 12052 bytes September 06 2024 20:41:55.
sched.py File 6442 bytes September 06 2024 20:41:55.
secrets.py File 2038 bytes September 06 2024 20:41:55.
selectors.py File 18561 bytes September 06 2024 20:41:55.
shelve.py File 8527 bytes September 06 2024 20:41:55.
shlex.py File 13325 bytes September 06 2024 20:41:55.
shutil.py File 51761 bytes September 06 2024 20:41:55.
signal.py File 2273 bytes September 06 2024 20:41:55.
site.py File 21877 bytes September 23 2024 11:15:42.
smtpd.py File 34722 bytes September 06 2024 20:41:55.
smtplib.py File 45014 bytes September 06 2024 20:41:55.
sndhdr.py File 7099 bytes September 06 2024 20:41:55.
socket.py File 35464 bytes September 06 2024 20:41:55.
socketserver.py File 27296 bytes September 06 2024 20:41:55.
sre_compile.py File 26695 bytes September 06 2024 20:41:55.
sre_constants.py File 7154 bytes September 06 2024 20:41:55.
sre_parse.py File 40230 bytes September 06 2024 20:41:55.
ssl.py File 52533 bytes September 06 2024 20:41:55.
stat.py File 5485 bytes September 06 2024 20:41:55.
statistics.py File 39690 bytes September 06 2024 20:41:55.
string.py File 10535 bytes September 06 2024 20:41:55.
stringprep.py File 12917 bytes September 06 2024 20:41:55.
struct.py File 257 bytes September 06 2024 20:41:55.
subprocess.py File 78250 bytes September 06 2024 20:41:55.
sunau.py File 18375 bytes September 06 2024 20:41:55.
symbol.py File 2109 bytes September 23 2024 11:18:30.
symtable.py File 8021 bytes September 06 2024 20:41:55.
sysconfig.py File 24893 bytes September 23 2024 11:15:42.
tabnanny.py File 11419 bytes September 06 2024 20:41:55.
tarfile.py File 106031 bytes September 06 2024 20:41:55.
telnetlib.py File 23254 bytes September 06 2024 20:41:55.
tempfile.py File 27822 bytes September 06 2024 20:41:55.
textwrap.py File 19407 bytes September 06 2024 20:41:55.
this.py File 1003 bytes September 06 2024 20:41:55.
threading.py File 50820 bytes September 06 2024 20:41:55.
timeit.py File 13493 bytes September 06 2024 20:41:55.
token.py File 2368 bytes September 06 2024 20:41:55.
tokenize.py File 25841 bytes September 06 2024 20:41:55.
trace.py File 29883 bytes September 06 2024 20:41:55.
traceback.py File 23611 bytes September 06 2024 20:41:55.
tracemalloc.py File 17076 bytes September 06 2024 20:41:55.
tty.py File 879 bytes September 06 2024 20:41:55.
types.py File 9713 bytes September 06 2024 20:41:55.
typing.py File 68962 bytes September 06 2024 20:41:55.
uu.py File 7277 bytes September 23 2024 11:26:07.
uuid.py File 30466 bytes September 06 2024 20:41:55.
warnings.py File 19688 bytes September 06 2024 20:41:55.
wave.py File 18230 bytes September 06 2024 20:41:55.
weakref.py File 21387 bytes September 06 2024 20:41:55.
webbrowser.py File 24096 bytes September 06 2024 20:41:55.
xdrlib.py File 5913 bytes September 06 2024 20:41:55.
zipapp.py File 7535 bytes September 06 2024 20:41:55.
zipfile.py File 88476 bytes September 06 2024 20:41:55.
zipimport.py File 30765 bytes September 06 2024 20:41:55.

Reading File: //opt/alt/python38/lib64/python3.8/csv.py

"""
csv.py - read/write/investigate CSV files
"""

import re
from _csv import Error, __version__, writer, reader, register_dialect, \
                 unregister_dialect, get_dialect, list_dialects, \
                 field_size_limit, \
                 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
                 __doc__
from _csv import Dialect as _Dialect

from io import StringIO

__all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
           "Error", "Dialect", "__doc__", "excel", "excel_tab",
           "field_size_limit", "reader", "writer",
           "register_dialect", "get_dialect", "list_dialects", "Sniffer",
           "unregister_dialect", "__version__", "DictReader", "DictWriter",
           "unix_dialect"]

class Dialect:
    """Describe a CSV dialect.

    This must be subclassed (see csv.excel).  Valid attributes are:
    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
    lineterminator, quoting.

    """
    _name = ""
    _valid = False
    # placeholders
    delimiter = None
    quotechar = None
    escapechar = None
    doublequote = None
    skipinitialspace = None
    lineterminator = None
    quoting = None

    def __init__(self):
        if self.__class__ != Dialect:
            self._valid = True
        self._validate()

    def _validate(self):
        try:
            _Dialect(self)
        except TypeError as e:
            # We do this for compatibility with py2.3
            raise Error(str(e))

class excel(Dialect):
    """Describe the usual properties of Excel-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\r\n'
    quoting = QUOTE_MINIMAL
register_dialect("excel", excel)

class excel_tab(excel):
    """Describe the usual properties of Excel-generated TAB-delimited files."""
    delimiter = '\t'
register_dialect("excel-tab", excel_tab)

class unix_dialect(Dialect):
    """Describe the usual properties of Unix-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\n'
    quoting = QUOTE_ALL
register_dialect("unix", unix_dialect)


class DictReader:
    def __init__(self, f, fieldnames=None, restkey=None, restval=None,
                 dialect="excel", *args, **kwds):
        self._fieldnames = fieldnames   # list of keys for the dict
        self.restkey = restkey          # key to catch long rows
        self.restval = restval          # default value for short rows
        self.reader = reader(f, dialect, *args, **kwds)
        self.dialect = dialect
        self.line_num = 0

    def __iter__(self):
        return self

    @property
    def fieldnames(self):
        if self._fieldnames is None:
            try:
                self._fieldnames = next(self.reader)
            except StopIteration:
                pass
        self.line_num = self.reader.line_num
        return self._fieldnames

    @fieldnames.setter
    def fieldnames(self, value):
        self._fieldnames = value

    def __next__(self):
        if self.line_num == 0:
            # Used only for its side effect.
            self.fieldnames
        row = next(self.reader)
        self.line_num = self.reader.line_num

        # unlike the basic reader, we prefer not to return blanks,
        # because we will typically wind up with a dict full of None
        # values
        while row == []:
            row = next(self.reader)
        d = dict(zip(self.fieldnames, row))
        lf = len(self.fieldnames)
        lr = len(row)
        if lf < lr:
            d[self.restkey] = row[lf:]
        elif lf > lr:
            for key in self.fieldnames[lr:]:
                d[key] = self.restval
        return d


class DictWriter:
    def __init__(self, f, fieldnames, restval="", extrasaction="raise",
                 dialect="excel", *args, **kwds):
        self.fieldnames = fieldnames    # list of keys for the dict
        self.restval = restval          # for writing short dicts
        if extrasaction.lower() not in ("raise", "ignore"):
            raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
                             % extrasaction)
        self.extrasaction = extrasaction
        self.writer = writer(f, dialect, *args, **kwds)

    def writeheader(self):
        header = dict(zip(self.fieldnames, self.fieldnames))
        return self.writerow(header)

    def _dict_to_list(self, rowdict):
        if self.extrasaction == "raise":
            wrong_fields = rowdict.keys() - self.fieldnames
            if wrong_fields:
                raise ValueError("dict contains fields not in fieldnames: "
                                 + ", ".join([repr(x) for x in wrong_fields]))
        return (rowdict.get(key, self.restval) for key in self.fieldnames)

    def writerow(self, rowdict):
        return self.writer.writerow(self._dict_to_list(rowdict))

    def writerows(self, rowdicts):
        return self.writer.writerows(map(self._dict_to_list, rowdicts))

# Guard Sniffer's type checking against builds that exclude complex()
try:
    complex
except NameError:
    complex = float

class Sniffer:
    '''
    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
    Returns a Dialect object.
    '''
    def __init__(self):
        # in case there is more than one possible delimiter
        self.preferred = [',', '\t', ';', ' ', ':']


    def sniff(self, sample, delimiters=None):
        """
        Returns a dialect (or None) corresponding to the sample
        """

        quotechar, doublequote, delimiter, skipinitialspace = \
                   self._guess_quote_and_delimiter(sample, delimiters)
        if not delimiter:
            delimiter, skipinitialspace = self._guess_delimiter(sample,
                                                                delimiters)

        if not delimiter:
            raise Error("Could not determine delimiter")

        class dialect(Dialect):
            _name = "sniffed"
            lineterminator = '\r\n'
            quoting = QUOTE_MINIMAL
            # escapechar = ''

        dialect.doublequote = doublequote
        dialect.delimiter = delimiter
        # _csv.reader won't accept a quotechar of ''
        dialect.quotechar = quotechar or '"'
        dialect.skipinitialspace = skipinitialspace

        return dialect


    def _guess_quote_and_delimiter(self, data, delimiters):
        """
        Looks for text enclosed between two identical quotes
        (the probable quotechar) which are preceded and followed
        by the same character (the probable delimiter).
        For example:
                         ,'some text',
        The quote with the most wins, same with the delimiter.
        If there is no quotechar the delimiter can't be determined
        this way.
        """

        matches = []
        for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
                      r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',   # ,".*?"
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
            matches = regexp.findall(data)
            if matches:
                break

        if not matches:
            # (quotechar, doublequote, delimiter, skipinitialspace)
            return ('', False, None, 0)
        quotes = {}
        delims = {}
        spaces = 0
        groupindex = regexp.groupindex
        for m in matches:
            n = groupindex['quote'] - 1
            key = m[n]
            if key:
                quotes[key] = quotes.get(key, 0) + 1
            try:
                n = groupindex['delim'] - 1
                key = m[n]
            except KeyError:
                continue
            if key and (delimiters is None or key in delimiters):
                delims[key] = delims.get(key, 0) + 1
            try:
                n = groupindex['space'] - 1
            except KeyError:
                continue
            if m[n]:
                spaces += 1

        quotechar = max(quotes, key=quotes.get)

        if delims:
            delim = max(delims, key=delims.get)
            skipinitialspace = delims[delim] == spaces
            if delim == '\n': # most likely a file with a single column
                delim = ''
        else:
            # there is *no* delimiter, it's a single column of quoted data
            delim = ''
            skipinitialspace = 0

        # if we see an extra quote between delimiters, we've got a
        # double quoted format
        dq_regexp = re.compile(
                               r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
                               {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)



        if dq_regexp.search(data):
            doublequote = True
        else:
            doublequote = False

        return (quotechar, doublequote, delim, skipinitialspace)


    def _guess_delimiter(self, data, delimiters):
        """
        The delimiter /should/ occur the same number of times on
        each row. However, due to malformed data, it may not. We don't want
        an all or nothing approach, so we allow for small variations in this
        number.
          1) build a table of the frequency of each character on every line.
          2) build a table of frequencies of this frequency (meta-frequency?),
             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
             7 times in 2 rows'
          3) use the mode of the meta-frequency to determine the /expected/
             frequency for that character
          4) find out how often the character actually meets that goal
          5) the character that best meets its goal is the delimiter
        For performance reasons, the data is evaluated in chunks, so it can
        try and evaluate the smallest portion of the data possible, evaluating
        additional chunks as necessary.
        """

        data = list(filter(None, data.split('\n')))

        ascii = [chr(c) for c in range(127)] # 7-bit ASCII

        # build frequency tables
        chunkLength = min(10, len(data))
        iteration = 0
        charFrequency = {}
        modes = {}
        delims = {}
        start, end = 0, chunkLength
        while start < len(data):
            iteration += 1
            for line in data[start:end]:
                for char in ascii:
                    metaFrequency = charFrequency.get(char, {})
                    # must count even if frequency is 0
                    freq = line.count(char)
                    # value is the mode
                    metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
                    charFrequency[char] = metaFrequency

            for char in charFrequency.keys():
                items = list(charFrequency[char].items())
                if len(items) == 1 and items[0][0] == 0:
                    continue
                # get the mode of the frequencies
                if len(items) > 1:
                    modes[char] = max(items, key=lambda x: x[1])
                    # adjust the mode - subtract the sum of all
                    # other frequencies
                    items.remove(modes[char])
                    modes[char] = (modes[char][0], modes[char][1]
                                   - sum(item[1] for item in items))
                else:
                    modes[char] = items[0]

            # build a list of possible delimiters
            modeList = modes.items()
            total = float(min(chunkLength * iteration, len(data)))
            # (rows of consistent data) / (number of rows) = 100%
            consistency = 1.0
            # minimum consistency threshold
            threshold = 0.9
            while len(delims) == 0 and consistency >= threshold:
                for k, v in modeList:
                    if v[0] > 0 and v[1] > 0:
                        if ((v[1]/total) >= consistency and
                            (delimiters is None or k in delimiters)):
                            delims[k] = v
                consistency -= 0.01

            if len(delims) == 1:
                delim = list(delims.keys())[0]
                skipinitialspace = (data[0].count(delim) ==
                                    data[0].count("%c " % delim))
                return (delim, skipinitialspace)

            # analyze another chunkLength lines
            start = end
            end += chunkLength

        if not delims:
            return ('', 0)

        # if there's more than one, fall back to a 'preferred' list
        if len(delims) > 1:
            for d in self.preferred:
                if d in delims.keys():
                    skipinitialspace = (data[0].count(d) ==
                                        data[0].count("%c " % d))
                    return (d, skipinitialspace)

        # nothing else indicates a preference, pick the character that
        # dominates(?)
        items = [(v,k) for (k,v) in delims.items()]
        items.sort()
        delim = items[-1][1]

        skipinitialspace = (data[0].count(delim) ==
                            data[0].count("%c " % delim))
        return (delim, skipinitialspace)


    def has_header(self, sample):
        # Creates a dictionary of types of data in each column. If any
        # column is of a single type (say, integers), *except* for the first
        # row, then the first row is presumed to be labels. If the type
        # can't be determined, it is assumed to be a string in which case
        # the length of the string is the determining factor: if all of the
        # rows except for the first are the same length, it's a header.
        # Finally, a 'vote' is taken at the end for each column, adding or
        # subtracting from the likelihood of the first row being a header.

        rdr = reader(StringIO(sample), self.sniff(sample))

        header = next(rdr) # assume first row is header

        columns = len(header)
        columnTypes = {}
        for i in range(columns): columnTypes[i] = None

        checked = 0
        for row in rdr:
            # arbitrary number of rows to check, to keep it sane
            if checked > 20:
                break
            checked += 1

            if len(row) != columns:
                continue # skip rows that have irregular number of columns

            for col in list(columnTypes.keys()):

                for thisType in [int, float, complex]:
                    try:
                        thisType(row[col])
                        break
                    except (ValueError, OverflowError):
                        pass
                else:
                    # fallback to length of string
                    thisType = len(row[col])

                if thisType != columnTypes[col]:
                    if columnTypes[col] is None: # add new column type
                        columnTypes[col] = thisType
                    else:
                        # type is inconsistent, remove column from
                        # consideration
                        del columnTypes[col]

        # finally, compare results against first row and "vote"
        # on whether it's a header
        hasHeader = 0
        for col, colType in columnTypes.items():
            if type(colType) == type(0): # it's a length
                if len(header[col]) != colType:
                    hasHeader += 1
                else:
                    hasHeader -= 1
            else: # attempt typecast
                try:
                    colType(header[col])
                except (ValueError, TypeError):
                    hasHeader += 1
                else:
                    hasHeader -= 1

        return hasHeader > 0

SILENT KILLER Tool