Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > > numpy > array_api > > > >
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
__pycache__ | Directory | - | - | |
tests | Directory | - | - | |
__init__.py | File | 10355 bytes | April 17 2025 13:10:58. | |
_array_object.py | File | 43739 bytes | April 17 2025 13:10:58. | |
_constants.py | File | 66 bytes | April 17 2025 13:10:58. | |
_creation_functions.py | File | 10050 bytes | April 17 2025 13:10:58. | |
_data_type_functions.py | File | 6288 bytes | April 17 2025 13:10:58. | |
_dtypes.py | File | 4823 bytes | April 17 2025 13:10:58. | |
_elementwise_functions.py | File | 25992 bytes | April 17 2025 13:10:58. | |
_indexing_functions.py | File | 601 bytes | April 17 2025 13:10:58. | |
_manipulation_functions.py | File | 3317 bytes | April 17 2025 13:10:58. | |
_searching_functions.py | File | 1715 bytes | April 17 2025 13:10:58. | |
_set_functions.py | File | 2948 bytes | April 17 2025 13:10:58. | |
_sorting_functions.py | File | 2031 bytes | April 17 2025 13:10:58. | |
_statistical_functions.py | File | 3584 bytes | April 17 2025 13:10:58. | |
_typing.py | File | 1228 bytes | April 17 2025 13:10:58. | |
_utility_functions.py | File | 824 bytes | April 17 2025 13:10:58. | |
linalg.py | File | 18221 bytes | April 17 2025 13:10:58. | |
setup.py | File | 341 bytes | April 17 2025 13:10:58. |
from __future__ import annotations from ._dtypes import ( _real_floating_dtypes, _real_numeric_dtypes, _numeric_dtypes, ) from ._array_object import Array from ._dtypes import float32, float64, complex64, complex128 from typing import TYPE_CHECKING, Optional, Tuple, Union if TYPE_CHECKING: from ._typing import Dtype import numpy as np def max( x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ) -> Array: if x.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in max") return Array._new(np.max(x._array, axis=axis, keepdims=keepdims)) def mean( x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ) -> Array: if x.dtype not in _real_floating_dtypes: raise TypeError("Only real floating-point dtypes are allowed in mean") return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims)) def min( x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ) -> Array: if x.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in min") return Array._new(np.min(x._array, axis=axis, keepdims=keepdims)) def prod( x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype: Optional[Dtype] = None, keepdims: bool = False, ) -> Array: if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in prod") # Note: sum() and prod() always upcast for dtype=None. `np.prod` does that # for integers, but not for float32 or complex64, so we need to # special-case it here if dtype is None: if x.dtype == float32: dtype = float64 elif x.dtype == complex64: dtype = complex128 return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims)) def std( x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False, ) -> Array: # Note: the keyword argument correction is different here if x.dtype not in _real_floating_dtypes: raise TypeError("Only real floating-point dtypes are allowed in std") return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)) def sum( x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype: Optional[Dtype] = None, keepdims: bool = False, ) -> Array: if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in sum") # Note: sum() and prod() always upcast for dtype=None. `np.sum` does that # for integers, but not for float32 or complex64, so we need to # special-case it here if dtype is None: if x.dtype == float32: dtype = float64 elif x.dtype == complex64: dtype = complex128 return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims)) def var( x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False, ) -> Array: # Note: the keyword argument correction is different here if x.dtype not in _real_floating_dtypes: raise TypeError("Only real floating-point dtypes are allowed in var") return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))
SILENT KILLER Tool