Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > > lib > >
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
__pycache__ | Directory | - | - | |
tests | Directory | - | - | |
__init__.py | File | 2763 bytes | April 17 2025 13:10:58. | |
__init__.pyi | File | 5596 bytes | April 17 2025 13:10:58. | |
_datasource.py | File | 22631 bytes | April 17 2025 13:10:58. | |
_iotools.py | File | 30868 bytes | April 17 2025 13:10:58. | |
_version.py | File | 4855 bytes | April 17 2025 13:10:58. | |
_version.pyi | File | 633 bytes | April 17 2025 13:10:58. | |
arraypad.py | File | 31803 bytes | April 17 2025 13:10:58. | |
arraypad.pyi | File | 1728 bytes | April 17 2025 13:10:58. | |
arraysetops.py | File | 33655 bytes | April 17 2025 13:10:58. | |
arraysetops.pyi | File | 8337 bytes | April 17 2025 13:10:58. | |
arrayterator.py | File | 7063 bytes | April 17 2025 13:10:58. | |
arrayterator.pyi | File | 1537 bytes | April 17 2025 13:10:58. | |
format.py | File | 34769 bytes | April 17 2025 13:10:58. | |
format.pyi | File | 748 bytes | April 17 2025 13:10:58. | |
function_base.py | File | 189103 bytes | April 17 2025 13:10:58. | |
function_base.pyi | File | 16585 bytes | April 17 2025 13:10:58. | |
histograms.py | File | 37697 bytes | April 17 2025 13:10:58. | |
histograms.pyi | File | 995 bytes | April 17 2025 13:10:58. | |
index_tricks.py | File | 31346 bytes | April 17 2025 13:10:58. | |
index_tricks.pyi | File | 4251 bytes | April 17 2025 13:10:58. | |
mixins.py | File | 7071 bytes | April 17 2025 13:10:58. | |
mixins.pyi | File | 3117 bytes | April 17 2025 13:10:58. | |
nanfunctions.py | File | 65775 bytes | April 17 2025 13:10:58. | |
nanfunctions.pyi | File | 606 bytes | April 17 2025 13:10:58. | |
npyio.py | File | 97316 bytes | April 17 2025 13:10:58. | |
npyio.pyi | File | 9728 bytes | April 17 2025 13:10:58. | |
polynomial.py | File | 44133 bytes | April 17 2025 13:10:58. | |
polynomial.pyi | File | 6958 bytes | April 17 2025 13:10:58. | |
recfunctions.py | File | 59423 bytes | April 17 2025 13:10:58. | |
scimath.py | File | 15037 bytes | April 17 2025 13:10:58. | |
scimath.pyi | File | 2883 bytes | April 17 2025 13:10:58. | |
setup.py | File | 405 bytes | April 17 2025 13:10:58. | |
shape_base.py | File | 38947 bytes | April 17 2025 13:10:58. | |
shape_base.pyi | File | 5184 bytes | April 17 2025 13:10:58. | |
stride_tricks.py | File | 17911 bytes | April 17 2025 13:10:58. | |
stride_tricks.pyi | File | 1747 bytes | April 17 2025 13:10:58. | |
twodim_base.py | File | 32947 bytes | April 17 2025 13:10:58. | |
twodim_base.pyi | File | 5370 bytes | April 17 2025 13:10:58. | |
type_check.py | File | 19954 bytes | April 17 2025 13:10:58. | |
type_check.pyi | File | 5571 bytes | April 17 2025 13:10:58. | |
ufunclike.py | File | 6325 bytes | April 17 2025 13:10:58. | |
ufunclike.pyi | File | 1293 bytes | April 17 2025 13:10:58. | |
user_array.py | File | 7721 bytes | April 17 2025 13:10:58. | |
utils.py | File | 37804 bytes | April 17 2025 13:10:58. | |
utils.pyi | File | 2360 bytes | April 17 2025 13:10:58. |
from collections.abc import Callable, Sequence from typing import ( Any, overload, TypeVar, Union, ) from numpy import ( generic, number, bool_, timedelta64, datetime64, int_, intp, float64, signedinteger, floating, complexfloating, object_, _OrderCF, ) from numpy._typing import ( DTypeLike, _DTypeLike, ArrayLike, _ArrayLike, NDArray, _SupportsArrayFunc, _ArrayLikeInt_co, _ArrayLikeFloat_co, _ArrayLikeComplex_co, _ArrayLikeObject_co, ) _T = TypeVar("_T") _SCT = TypeVar("_SCT", bound=generic) # The returned arrays dtype must be compatible with `np.equal` _MaskFunc = Callable[ [NDArray[int_], _T], NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]], ] __all__: list[str] @overload def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def fliplr(m: ArrayLike) -> NDArray[Any]: ... @overload def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def flipud(m: ArrayLike) -> NDArray[Any]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[float64]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[_SCT]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[Any]: ... @overload def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[float64]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[_SCT]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[Any]: ... @overload def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeInt_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[signedinteger[Any]]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeFloat_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[floating[Any]]: ... @overload def vander( x: _ArrayLikeComplex_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[complexfloating[Any, Any]]: ... @overload def vander( x: _ArrayLikeObject_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[object_]: ... @overload def histogram2d( # type: ignore[misc] x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[floating[Any]], NDArray[floating[Any]], ]: ... @overload def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[complexfloating[Any, Any]], NDArray[complexfloating[Any, Any]], ]: ... @overload # TODO: Sort out `bins` def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: Sequence[_ArrayLikeInt_co], range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[Any], NDArray[Any], ]: ... # NOTE: we're assuming/demanding here the `mask_func` returns # an ndarray of shape `(n, n)`; otherwise there is the possibility # of the output tuple having more or less than 2 elements @overload def mask_indices( n: int, mask_func: _MaskFunc[int], k: int = ..., ) -> tuple[NDArray[intp], NDArray[intp]]: ... @overload def mask_indices( n: int, mask_func: _MaskFunc[_T], k: _T, ) -> tuple[NDArray[intp], NDArray[intp]]: ... def tril_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def tril_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ...
SILENT KILLER Tool