SILENT KILLERPanel

Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > typing > tests > > data > reveal


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/typing/tests//data/reveal

NameTypeSizeLast ModifiedActions
arithmetic.pyi File 20805 bytes April 17 2025 13:10:58.
array_constructors.pyi File 11831 bytes April 17 2025 13:10:58.
arraypad.pyi File 694 bytes April 17 2025 13:10:58.
arrayprint.pyi File 686 bytes April 17 2025 13:10:58.
arraysetops.pyi File 4671 bytes April 17 2025 13:10:58.
arrayterator.pyi File 1128 bytes April 17 2025 13:10:58.
bitwise_ops.pyi File 3607 bytes April 17 2025 13:10:58.
char.pyi File 8047 bytes April 17 2025 13:10:58.
chararray.pyi File 6312 bytes April 17 2025 13:10:58.
comparisons.pyi File 8018 bytes April 17 2025 13:10:58.
constants.pyi File 1940 bytes April 17 2025 13:10:58.
ctypeslib.pyi File 5107 bytes April 17 2025 13:10:58.
datasource.pyi File 557 bytes April 17 2025 13:10:58.
dtype.pyi File 2787 bytes April 17 2025 13:10:58.
einsumfunc.pyi File 2173 bytes April 17 2025 13:10:58.
emath.pyi File 2538 bytes April 17 2025 13:10:58.
false_positives.pyi File 349 bytes April 17 2025 13:10:58.
fft.pyi File 1852 bytes April 17 2025 13:10:58.
flatiter.pyi File 819 bytes April 17 2025 13:10:58.
fromnumeric.pyi File 13631 bytes April 17 2025 13:10:58.
getlimits.pyi File 1547 bytes April 17 2025 13:10:58.
histograms.pyi File 1391 bytes April 17 2025 13:10:58.
index_tricks.pyi File 3481 bytes April 17 2025 13:10:58.
lib_function_base.pyi File 9140 bytes April 17 2025 13:10:58.
lib_polynomial.pyi File 6353 bytes April 17 2025 13:10:58.
lib_utils.pyi File 917 bytes April 17 2025 13:10:58.
lib_version.pyi File 605 bytes April 17 2025 13:10:58.
linalg.pyi File 5217 bytes April 17 2025 13:10:58.
matrix.pyi File 3033 bytes April 17 2025 13:10:58.
memmap.pyi File 755 bytes April 17 2025 13:10:58.
mod.pyi File 5989 bytes April 17 2025 13:10:58.
modules.pyi File 1994 bytes April 17 2025 13:10:58.
multiarray.pyi File 5670 bytes April 17 2025 13:10:58.
nbit_base_example.pyi File 500 bytes April 17 2025 13:10:58.
ndarray_conversion.pyi File 1913 bytes April 17 2025 13:10:58.
ndarray_misc.pyi File 7797 bytes April 17 2025 13:10:58.
ndarray_shape_manipulation.pyi File 904 bytes April 17 2025 13:10:58.
nditer.pyi File 2067 bytes April 17 2025 13:10:58.
nested_sequence.pyi File 648 bytes April 17 2025 13:10:58.
npyio.pyi File 4434 bytes April 17 2025 13:10:58.
numeric.pyi File 6802 bytes April 17 2025 13:10:58.
numerictypes.pyi File 1711 bytes April 17 2025 13:10:58.
random.pyi File 129510 bytes April 17 2025 13:10:58.
rec.pyi File 3380 bytes April 17 2025 13:10:58.
scalars.pyi File 5347 bytes April 17 2025 13:10:58.
shape_base.pyi File 2632 bytes April 17 2025 13:10:58.
stride_tricks.pyi File 1563 bytes April 17 2025 13:10:58.
testing.pyi File 8877 bytes April 17 2025 13:10:58.
twodim_base.pyi File 3327 bytes April 17 2025 13:10:58.
type_check.pyi File 3031 bytes April 17 2025 13:10:58.
ufunc_config.pyi File 1304 bytes April 17 2025 13:10:58.
ufunclike.pyi File 1319 bytes April 17 2025 13:10:58.
ufuncs.pyi File 2919 bytes April 17 2025 13:10:58.
version.pyi File 313 bytes April 17 2025 13:10:58.
warnings_and_errors.pyi File 420 bytes April 17 2025 13:10:58.

Reading File: //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/typing/tests//data/reveal/mod.pyi

from typing import Any
import numpy as np

f8 = np.float64()
i8 = np.int64()
u8 = np.uint64()

f4 = np.float32()
i4 = np.int32()
u4 = np.uint32()

td = np.timedelta64(0, "D")
b_ = np.bool_()

b = bool()
f = float()
i = int()

AR_b: np.ndarray[Any, np.dtype[np.bool_]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]

# Time structures

reveal_type(td % td)  # E: timedelta64
reveal_type(AR_m % td)  # E: Any
reveal_type(td % AR_m)  # E: Any

reveal_type(divmod(td, td))  # E: Tuple[{int64}, timedelta64]
reveal_type(divmod(AR_m, td))  # E: Tuple[ndarray[Any, dtype[signedinteger[typing._64Bit]]], ndarray[Any, dtype[timedelta64]]]
reveal_type(divmod(td, AR_m))  # E: Tuple[ndarray[Any, dtype[signedinteger[typing._64Bit]]], ndarray[Any, dtype[timedelta64]]]

# Bool

reveal_type(b_ % b)  # E: {int8}
reveal_type(b_ % i)  # E: {int_}
reveal_type(b_ % f)  # E: {float64}
reveal_type(b_ % b_)  # E: {int8}
reveal_type(b_ % i8)  # E: {int64}
reveal_type(b_ % u8)  # E: {uint64}
reveal_type(b_ % f8)  # E: {float64}
reveal_type(b_ % AR_b)  # E: ndarray[Any, dtype[{int8}]]

reveal_type(divmod(b_, b))  # E: Tuple[{int8}, {int8}]
reveal_type(divmod(b_, i))  # E: Tuple[{int_}, {int_}]
reveal_type(divmod(b_, f))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(b_, b_))  # E: Tuple[{int8}, {int8}]
reveal_type(divmod(b_, i8))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(b_, u8))  # E: Tuple[{uint64}, {uint64}]
reveal_type(divmod(b_, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(b_, AR_b))  # E: ndarray[Any, dtype[{int8}]], ndarray[Any, dtype[{int8}]]]

reveal_type(b % b_)  # E: {int8}
reveal_type(i % b_)  # E: {int_}
reveal_type(f % b_)  # E: {float64}
reveal_type(b_ % b_)  # E: {int8}
reveal_type(i8 % b_)  # E: {int64}
reveal_type(u8 % b_)  # E: {uint64}
reveal_type(f8 % b_)  # E: {float64}
reveal_type(AR_b % b_)  # E: ndarray[Any, dtype[{int8}]]

reveal_type(divmod(b, b_))  # E: Tuple[{int8}, {int8}]
reveal_type(divmod(i, b_))  # E: Tuple[{int_}, {int_}]
reveal_type(divmod(f, b_))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(b_, b_))  # E: Tuple[{int8}, {int8}]
reveal_type(divmod(i8, b_))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(u8, b_))  # E: Tuple[{uint64}, {uint64}]
reveal_type(divmod(f8, b_))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(AR_b, b_))  # E: ndarray[Any, dtype[{int8}]], ndarray[Any, dtype[{int8}]]]

# int

reveal_type(i8 % b)  # E: {int64}
reveal_type(i8 % i)  # E: {int64}
reveal_type(i8 % f)  # E: {float64}
reveal_type(i8 % i8)  # E: {int64}
reveal_type(i8 % f8)  # E: {float64}
reveal_type(i4 % i8)  # E: {int64}
reveal_type(i4 % f8)  # E: {float64}
reveal_type(i4 % i4)  # E: {int32}
reveal_type(i4 % f4)  # E: {float32}
reveal_type(i8 % AR_b)  # E: ndarray[Any, dtype[signedinteger[Any]]]

reveal_type(divmod(i8, b))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, i))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, f))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i8, i8))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i8, i4))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, f4))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i4))  # E: Tuple[{int32}, {int32}]
reveal_type(divmod(i4, f4))  # E: Tuple[{float32}, {float32}]
reveal_type(divmod(i8, AR_b))  # E: Tuple[ndarray[Any, dtype[signedinteger[Any]]], ndarray[Any, dtype[signedinteger[Any]]]]

reveal_type(b % i8)  # E: {int64}
reveal_type(i % i8)  # E: {int64}
reveal_type(f % i8)  # E: {float64}
reveal_type(i8 % i8)  # E: {int64}
reveal_type(f8 % i8)  # E: {float64}
reveal_type(i8 % i4)  # E: {int64}
reveal_type(f8 % i4)  # E: {float64}
reveal_type(i4 % i4)  # E: {int32}
reveal_type(f4 % i4)  # E: {float32}
reveal_type(AR_b % i8)  # E: ndarray[Any, dtype[signedinteger[Any]]]

reveal_type(divmod(b, i8))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i, i8))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(f, i8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i8, i8))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(f8, i8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i8))  # E: Tuple[{int64}, {int64}]
reveal_type(divmod(f4, i8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i4))  # E: Tuple[{int32}, {int32}]
reveal_type(divmod(f4, i4))  # E: Tuple[{float32}, {float32}]
reveal_type(divmod(AR_b, i8))  # E: Tuple[ndarray[Any, dtype[signedinteger[Any]]], ndarray[Any, dtype[signedinteger[Any]]]]

# float

reveal_type(f8 % b)  # E: {float64}
reveal_type(f8 % i)  # E: {float64}
reveal_type(f8 % f)  # E: {float64}
reveal_type(i8 % f4)  # E: {float64}
reveal_type(f4 % f4)  # E: {float32}
reveal_type(f8 % AR_b)  # E: ndarray[Any, dtype[floating[Any]]]

reveal_type(divmod(f8, b))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, i))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f4))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f4))  # E: Tuple[{float32}, {float32}]
reveal_type(divmod(f8, AR_b))  # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]]

reveal_type(b % f8)  # E: {float64}
reveal_type(i % f8)  # E: {float64}
reveal_type(f % f8)  # E: {float64}
reveal_type(f8 % f8)  # E: {float64}
reveal_type(f8 % f8)  # E: {float64}
reveal_type(f4 % f4)  # E: {float32}
reveal_type(AR_b % f8)  # E: ndarray[Any, dtype[floating[Any]]]

reveal_type(divmod(b, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f8))  # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f4))  # E: Tuple[{float32}, {float32}]
reveal_type(divmod(AR_b, f8))  # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]]

SILENT KILLER Tool