Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > typing > tests > data > > > reveal
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
arithmetic.pyi | File | 20805 bytes | April 17 2025 13:10:58. | |
array_constructors.pyi | File | 11831 bytes | April 17 2025 13:10:58. | |
arraypad.pyi | File | 694 bytes | April 17 2025 13:10:58. | |
arrayprint.pyi | File | 686 bytes | April 17 2025 13:10:58. | |
arraysetops.pyi | File | 4671 bytes | April 17 2025 13:10:58. | |
arrayterator.pyi | File | 1128 bytes | April 17 2025 13:10:58. | |
bitwise_ops.pyi | File | 3607 bytes | April 17 2025 13:10:58. | |
char.pyi | File | 8047 bytes | April 17 2025 13:10:58. | |
chararray.pyi | File | 6312 bytes | April 17 2025 13:10:58. | |
comparisons.pyi | File | 8018 bytes | April 17 2025 13:10:58. | |
constants.pyi | File | 1940 bytes | April 17 2025 13:10:58. | |
ctypeslib.pyi | File | 5107 bytes | April 17 2025 13:10:58. | |
datasource.pyi | File | 557 bytes | April 17 2025 13:10:58. | |
dtype.pyi | File | 2787 bytes | April 17 2025 13:10:58. | |
einsumfunc.pyi | File | 2173 bytes | April 17 2025 13:10:58. | |
emath.pyi | File | 2538 bytes | April 17 2025 13:10:58. | |
false_positives.pyi | File | 349 bytes | April 17 2025 13:10:58. | |
fft.pyi | File | 1852 bytes | April 17 2025 13:10:58. | |
flatiter.pyi | File | 819 bytes | April 17 2025 13:10:58. | |
fromnumeric.pyi | File | 13631 bytes | April 17 2025 13:10:58. | |
getlimits.pyi | File | 1547 bytes | April 17 2025 13:10:58. | |
histograms.pyi | File | 1391 bytes | April 17 2025 13:10:58. | |
index_tricks.pyi | File | 3481 bytes | April 17 2025 13:10:58. | |
lib_function_base.pyi | File | 9140 bytes | April 17 2025 13:10:58. | |
lib_polynomial.pyi | File | 6353 bytes | April 17 2025 13:10:58. | |
lib_utils.pyi | File | 917 bytes | April 17 2025 13:10:58. | |
lib_version.pyi | File | 605 bytes | April 17 2025 13:10:58. | |
linalg.pyi | File | 5217 bytes | April 17 2025 13:10:58. | |
matrix.pyi | File | 3033 bytes | April 17 2025 13:10:58. | |
memmap.pyi | File | 755 bytes | April 17 2025 13:10:58. | |
mod.pyi | File | 5989 bytes | April 17 2025 13:10:58. | |
modules.pyi | File | 1994 bytes | April 17 2025 13:10:58. | |
multiarray.pyi | File | 5670 bytes | April 17 2025 13:10:58. | |
nbit_base_example.pyi | File | 500 bytes | April 17 2025 13:10:58. | |
ndarray_conversion.pyi | File | 1913 bytes | April 17 2025 13:10:58. | |
ndarray_misc.pyi | File | 7797 bytes | April 17 2025 13:10:58. | |
ndarray_shape_manipulation.pyi | File | 904 bytes | April 17 2025 13:10:58. | |
nditer.pyi | File | 2067 bytes | April 17 2025 13:10:58. | |
nested_sequence.pyi | File | 648 bytes | April 17 2025 13:10:58. | |
npyio.pyi | File | 4434 bytes | April 17 2025 13:10:58. | |
numeric.pyi | File | 6802 bytes | April 17 2025 13:10:58. | |
numerictypes.pyi | File | 1711 bytes | April 17 2025 13:10:58. | |
random.pyi | File | 129510 bytes | April 17 2025 13:10:58. | |
rec.pyi | File | 3380 bytes | April 17 2025 13:10:58. | |
scalars.pyi | File | 5347 bytes | April 17 2025 13:10:58. | |
shape_base.pyi | File | 2632 bytes | April 17 2025 13:10:58. | |
stride_tricks.pyi | File | 1563 bytes | April 17 2025 13:10:58. | |
testing.pyi | File | 8877 bytes | April 17 2025 13:10:58. | |
twodim_base.pyi | File | 3327 bytes | April 17 2025 13:10:58. | |
type_check.pyi | File | 3031 bytes | April 17 2025 13:10:58. | |
ufunc_config.pyi | File | 1304 bytes | April 17 2025 13:10:58. | |
ufunclike.pyi | File | 1319 bytes | April 17 2025 13:10:58. | |
ufuncs.pyi | File | 2919 bytes | April 17 2025 13:10:58. | |
version.pyi | File | 313 bytes | April 17 2025 13:10:58. | |
warnings_and_errors.pyi | File | 420 bytes | April 17 2025 13:10:58. |
import re import pathlib from typing import IO import numpy.typing as npt import numpy as np str_path: str pathlib_path: pathlib.Path str_file: IO[str] bytes_file: IO[bytes] bag_obj: np.lib.npyio.BagObj[int] npz_file: np.lib.npyio.NpzFile AR_i8: npt.NDArray[np.int64] AR_LIKE_f8: list[float] class BytesWriter: def write(self, data: bytes) -> None: ... class BytesReader: def read(self, n: int = ...) -> bytes: ... def seek(self, offset: int, whence: int = ...) -> int: ... bytes_writer: BytesWriter bytes_reader: BytesReader reveal_type(bag_obj.a) # E: int reveal_type(bag_obj.b) # E: int reveal_type(npz_file.zip) # E: zipfile.ZipFile reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]] reveal_type(npz_file.files) # E: list[builtins.str] reveal_type(npz_file.allow_pickle) # E: bool reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]] reveal_type(npz_file.f) # E: lib.npyio.BagObj[lib.npyio.NpzFile] reveal_type(npz_file["test"]) # E: ndarray[Any, dtype[Any]] reveal_type(len(npz_file)) # E: int with npz_file as f: reveal_type(f) # E: lib.npyio.NpzFile reveal_type(np.load(bytes_file)) # E: Any reveal_type(np.load(pathlib_path, allow_pickle=True)) # E: Any reveal_type(np.load(str_path, encoding="bytes")) # E: Any reveal_type(np.load(bytes_reader)) # E: Any reveal_type(np.save(bytes_file, AR_LIKE_f8)) # E: None reveal_type(np.save(pathlib_path, AR_i8, allow_pickle=True)) # E: None reveal_type(np.save(str_path, AR_LIKE_f8)) # E: None reveal_type(np.save(bytes_writer, AR_LIKE_f8)) # E: None reveal_type(np.savez(bytes_file, AR_LIKE_f8)) # E: None reveal_type(np.savez(pathlib_path, ar1=AR_i8, ar2=AR_i8)) # E: None reveal_type(np.savez(str_path, AR_LIKE_f8, ar1=AR_i8)) # E: None reveal_type(np.savez(bytes_writer, AR_LIKE_f8, ar1=AR_i8)) # E: None reveal_type(np.savez_compressed(bytes_file, AR_LIKE_f8)) # E: None reveal_type(np.savez_compressed(pathlib_path, ar1=AR_i8, ar2=AR_i8)) # E: None reveal_type(np.savez_compressed(str_path, AR_LIKE_f8, ar1=AR_i8)) # E: None reveal_type(np.savez_compressed(bytes_writer, AR_LIKE_f8, ar1=AR_i8)) # E: None reveal_type(np.loadtxt(bytes_file)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.loadtxt(pathlib_path, dtype=np.str_)) # E: ndarray[Any, dtype[str_]] reveal_type(np.loadtxt(str_path, dtype=str, skiprows=2)) # E: ndarray[Any, dtype[Any]] reveal_type(np.loadtxt(str_file, comments="test")) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.loadtxt(str_file, comments=None)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.loadtxt(str_path, delimiter="\n")) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.loadtxt(str_path, ndmin=2)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.loadtxt(["1", "2", "3"])) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.fromregex(bytes_file, "test", np.float64)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.fromregex(str_file, b"test", dtype=float)) # E: ndarray[Any, dtype[Any]] reveal_type(np.fromregex(str_path, re.compile("test"), dtype=np.str_, encoding="utf8")) # E: ndarray[Any, dtype[str_]] reveal_type(np.fromregex(pathlib_path, "test", np.float64)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.fromregex(bytes_reader, "test", np.float64)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.genfromtxt(bytes_file)) # E: ndarray[Any, dtype[Any]] reveal_type(np.genfromtxt(pathlib_path, dtype=np.str_)) # E: ndarray[Any, dtype[str_]] reveal_type(np.genfromtxt(str_path, dtype=str, skip_header=2)) # E: ndarray[Any, dtype[Any]] reveal_type(np.genfromtxt(str_file, comments="test")) # E: ndarray[Any, dtype[Any]] reveal_type(np.genfromtxt(str_path, delimiter="\n")) # E: ndarray[Any, dtype[Any]] reveal_type(np.genfromtxt(str_path, ndmin=2)) # E: ndarray[Any, dtype[Any]] reveal_type(np.genfromtxt(["1", "2", "3"], ndmin=2)) # E: ndarray[Any, dtype[Any]] reveal_type(np.recfromtxt(bytes_file)) # E: recarray[Any, dtype[record]] reveal_type(np.recfromtxt(pathlib_path, usemask=True)) # E: ma.mrecords.MaskedRecords[Any, dtype[void]] reveal_type(np.recfromtxt(["1", "2", "3"])) # E: recarray[Any, dtype[record]] reveal_type(np.recfromcsv(bytes_file)) # E: recarray[Any, dtype[record]] reveal_type(np.recfromcsv(pathlib_path, usemask=True)) # E: ma.mrecords.MaskedRecords[Any, dtype[void]] reveal_type(np.recfromcsv(["1", "2", "3"])) # E: recarray[Any, dtype[record]]
SILENT KILLER Tool