Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > typing > tests > data > > reveal
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
arithmetic.pyi | File | 20805 bytes | April 17 2025 13:10:58. | |
array_constructors.pyi | File | 11831 bytes | April 17 2025 13:10:58. | |
arraypad.pyi | File | 694 bytes | April 17 2025 13:10:58. | |
arrayprint.pyi | File | 686 bytes | April 17 2025 13:10:58. | |
arraysetops.pyi | File | 4671 bytes | April 17 2025 13:10:58. | |
arrayterator.pyi | File | 1128 bytes | April 17 2025 13:10:58. | |
bitwise_ops.pyi | File | 3607 bytes | April 17 2025 13:10:58. | |
char.pyi | File | 8047 bytes | April 17 2025 13:10:58. | |
chararray.pyi | File | 6312 bytes | April 17 2025 13:10:58. | |
comparisons.pyi | File | 8018 bytes | April 17 2025 13:10:58. | |
constants.pyi | File | 1940 bytes | April 17 2025 13:10:58. | |
ctypeslib.pyi | File | 5107 bytes | April 17 2025 13:10:58. | |
datasource.pyi | File | 557 bytes | April 17 2025 13:10:58. | |
dtype.pyi | File | 2787 bytes | April 17 2025 13:10:58. | |
einsumfunc.pyi | File | 2173 bytes | April 17 2025 13:10:58. | |
emath.pyi | File | 2538 bytes | April 17 2025 13:10:58. | |
false_positives.pyi | File | 349 bytes | April 17 2025 13:10:58. | |
fft.pyi | File | 1852 bytes | April 17 2025 13:10:58. | |
flatiter.pyi | File | 819 bytes | April 17 2025 13:10:58. | |
fromnumeric.pyi | File | 13631 bytes | April 17 2025 13:10:58. | |
getlimits.pyi | File | 1547 bytes | April 17 2025 13:10:58. | |
histograms.pyi | File | 1391 bytes | April 17 2025 13:10:58. | |
index_tricks.pyi | File | 3481 bytes | April 17 2025 13:10:58. | |
lib_function_base.pyi | File | 9140 bytes | April 17 2025 13:10:58. | |
lib_polynomial.pyi | File | 6353 bytes | April 17 2025 13:10:58. | |
lib_utils.pyi | File | 917 bytes | April 17 2025 13:10:58. | |
lib_version.pyi | File | 605 bytes | April 17 2025 13:10:58. | |
linalg.pyi | File | 5217 bytes | April 17 2025 13:10:58. | |
matrix.pyi | File | 3033 bytes | April 17 2025 13:10:58. | |
memmap.pyi | File | 755 bytes | April 17 2025 13:10:58. | |
mod.pyi | File | 5989 bytes | April 17 2025 13:10:58. | |
modules.pyi | File | 1994 bytes | April 17 2025 13:10:58. | |
multiarray.pyi | File | 5670 bytes | April 17 2025 13:10:58. | |
nbit_base_example.pyi | File | 500 bytes | April 17 2025 13:10:58. | |
ndarray_conversion.pyi | File | 1913 bytes | April 17 2025 13:10:58. | |
ndarray_misc.pyi | File | 7797 bytes | April 17 2025 13:10:58. | |
ndarray_shape_manipulation.pyi | File | 904 bytes | April 17 2025 13:10:58. | |
nditer.pyi | File | 2067 bytes | April 17 2025 13:10:58. | |
nested_sequence.pyi | File | 648 bytes | April 17 2025 13:10:58. | |
npyio.pyi | File | 4434 bytes | April 17 2025 13:10:58. | |
numeric.pyi | File | 6802 bytes | April 17 2025 13:10:58. | |
numerictypes.pyi | File | 1711 bytes | April 17 2025 13:10:58. | |
random.pyi | File | 129510 bytes | April 17 2025 13:10:58. | |
rec.pyi | File | 3380 bytes | April 17 2025 13:10:58. | |
scalars.pyi | File | 5347 bytes | April 17 2025 13:10:58. | |
shape_base.pyi | File | 2632 bytes | April 17 2025 13:10:58. | |
stride_tricks.pyi | File | 1563 bytes | April 17 2025 13:10:58. | |
testing.pyi | File | 8877 bytes | April 17 2025 13:10:58. | |
twodim_base.pyi | File | 3327 bytes | April 17 2025 13:10:58. | |
type_check.pyi | File | 3031 bytes | April 17 2025 13:10:58. | |
ufunc_config.pyi | File | 1304 bytes | April 17 2025 13:10:58. | |
ufunclike.pyi | File | 1319 bytes | April 17 2025 13:10:58. | |
ufuncs.pyi | File | 2919 bytes | April 17 2025 13:10:58. | |
version.pyi | File | 313 bytes | April 17 2025 13:10:58. | |
warnings_and_errors.pyi | File | 420 bytes | April 17 2025 13:10:58. |
"""Tests for :mod:`core.fromnumeric`.""" import numpy as np import numpy.typing as npt class NDArraySubclass(npt.NDArray[np.complex128]): ... AR_b: npt.NDArray[np.bool_] AR_f4: npt.NDArray[np.float32] AR_c16: npt.NDArray[np.complex128] AR_u8: npt.NDArray[np.uint64] AR_i8: npt.NDArray[np.int64] AR_O: npt.NDArray[np.object_] AR_subclass: NDArraySubclass b: np.bool_ f4: np.float32 i8: np.int64 f: float reveal_type(np.take(b, 0)) # E: bool_ reveal_type(np.take(f4, 0)) # E: {float32} reveal_type(np.take(f, 0)) # E: Any reveal_type(np.take(AR_b, 0)) # E: bool_ reveal_type(np.take(AR_f4, 0)) # E: {float32} reveal_type(np.take(AR_b, [0])) # E: ndarray[Any, dtype[bool_]] reveal_type(np.take(AR_f4, [0])) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.take([1], [0])) # E: ndarray[Any, dtype[Any]] reveal_type(np.take(AR_f4, [0], out=AR_subclass)) # E: NDArraySubclass reveal_type(np.reshape(b, 1)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.reshape(f4, 1)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.reshape(f, 1)) # E: ndarray[Any, dtype[Any]] reveal_type(np.reshape(AR_b, 1)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.reshape(AR_f4, 1)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.choose(1, [True, True])) # E: Any reveal_type(np.choose([1], [True, True])) # E: ndarray[Any, dtype[Any]] reveal_type(np.choose([1], AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.choose([1], AR_b, out=AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.repeat(b, 1)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.repeat(f4, 1)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.repeat(f, 1)) # E: ndarray[Any, dtype[Any]] reveal_type(np.repeat(AR_b, 1)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.repeat(AR_f4, 1)) # E: ndarray[Any, dtype[{float32}]] # TODO: array_bdd tests for np.put() reveal_type(np.swapaxes([[0, 1]], 0, 0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.swapaxes(AR_b, 0, 0)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.swapaxes(AR_f4, 0, 0)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.transpose(b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.transpose(f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.transpose(f)) # E: ndarray[Any, dtype[Any]] reveal_type(np.transpose(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.transpose(AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.partition(b, 0, axis=None)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.partition(f4, 0, axis=None)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.partition(f, 0, axis=None)) # E: ndarray[Any, dtype[Any]] reveal_type(np.partition(AR_b, 0)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.partition(AR_f4, 0)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.argpartition(b, 0)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.argpartition(f4, 0)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.argpartition(f, 0)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.argpartition(AR_b, 0)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.argpartition(AR_f4, 0)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.sort([2, 1], 0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.sort(AR_b, 0)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.sort(AR_f4, 0)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.argsort(AR_b, 0)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.argsort(AR_f4, 0)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.argmax(AR_b)) # E: {intp} reveal_type(np.argmax(AR_f4)) # E: {intp} reveal_type(np.argmax(AR_b, axis=0)) # E: Any reveal_type(np.argmax(AR_f4, axis=0)) # E: Any reveal_type(np.argmax(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.argmin(AR_b)) # E: {intp} reveal_type(np.argmin(AR_f4)) # E: {intp} reveal_type(np.argmin(AR_b, axis=0)) # E: Any reveal_type(np.argmin(AR_f4, axis=0)) # E: Any reveal_type(np.argmin(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.searchsorted(AR_b[0], 0)) # E: {intp} reveal_type(np.searchsorted(AR_f4[0], 0)) # E: {intp} reveal_type(np.searchsorted(AR_b[0], [0])) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.searchsorted(AR_f4[0], [0])) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.resize(b, (5, 5))) # E: ndarray[Any, dtype[bool_]] reveal_type(np.resize(f4, (5, 5))) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.resize(f, (5, 5))) # E: ndarray[Any, dtype[Any]] reveal_type(np.resize(AR_b, (5, 5))) # E: ndarray[Any, dtype[bool_]] reveal_type(np.resize(AR_f4, (5, 5))) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.squeeze(b)) # E: bool_ reveal_type(np.squeeze(f4)) # E: {float32} reveal_type(np.squeeze(f)) # E: ndarray[Any, dtype[Any]] reveal_type(np.squeeze(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.squeeze(AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.diagonal(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.diagonal(AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.trace(AR_b)) # E: Any reveal_type(np.trace(AR_f4)) # E: Any reveal_type(np.trace(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.ravel(b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.ravel(f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.ravel(f)) # E: ndarray[Any, dtype[Any]] reveal_type(np.ravel(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.ravel(AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.nonzero(b)) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.nonzero(f4)) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.nonzero(f)) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.nonzero(AR_b)) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.nonzero(AR_f4)) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.shape(b)) # E: tuple[builtins.int, ...] reveal_type(np.shape(f4)) # E: tuple[builtins.int, ...] reveal_type(np.shape(f)) # E: tuple[builtins.int, ...] reveal_type(np.shape(AR_b)) # E: tuple[builtins.int, ...] reveal_type(np.shape(AR_f4)) # E: tuple[builtins.int, ...] reveal_type(np.compress([True], b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.compress([True], f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.compress([True], f)) # E: ndarray[Any, dtype[Any]] reveal_type(np.compress([True], AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.compress([True], AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.clip(b, 0, 1.0)) # E: bool_ reveal_type(np.clip(f4, -1, 1)) # E: {float32} reveal_type(np.clip(f, 0, 1)) # E: Any reveal_type(np.clip(AR_b, 0, 1)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.clip(AR_f4, 0, 1)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.clip([0], 0, 1)) # E: ndarray[Any, dtype[Any]] reveal_type(np.clip(AR_b, 0, 1, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.sum(b)) # E: bool_ reveal_type(np.sum(f4)) # E: {float32} reveal_type(np.sum(f)) # E: Any reveal_type(np.sum(AR_b)) # E: bool_ reveal_type(np.sum(AR_f4)) # E: {float32} reveal_type(np.sum(AR_b, axis=0)) # E: Any reveal_type(np.sum(AR_f4, axis=0)) # E: Any reveal_type(np.sum(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.all(b)) # E: bool_ reveal_type(np.all(f4)) # E: bool_ reveal_type(np.all(f)) # E: bool_ reveal_type(np.all(AR_b)) # E: bool_ reveal_type(np.all(AR_f4)) # E: bool_ reveal_type(np.all(AR_b, axis=0)) # E: Any reveal_type(np.all(AR_f4, axis=0)) # E: Any reveal_type(np.all(AR_b, keepdims=True)) # E: Any reveal_type(np.all(AR_f4, keepdims=True)) # E: Any reveal_type(np.all(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.any(b)) # E: bool_ reveal_type(np.any(f4)) # E: bool_ reveal_type(np.any(f)) # E: bool_ reveal_type(np.any(AR_b)) # E: bool_ reveal_type(np.any(AR_f4)) # E: bool_ reveal_type(np.any(AR_b, axis=0)) # E: Any reveal_type(np.any(AR_f4, axis=0)) # E: Any reveal_type(np.any(AR_b, keepdims=True)) # E: Any reveal_type(np.any(AR_f4, keepdims=True)) # E: Any reveal_type(np.any(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.cumsum(b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.cumsum(f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.cumsum(f)) # E: ndarray[Any, dtype[Any]] reveal_type(np.cumsum(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.cumsum(AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.cumsum(f, dtype=float)) # E: ndarray[Any, dtype[Any]] reveal_type(np.cumsum(f, dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.cumsum(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.ptp(b)) # E: bool_ reveal_type(np.ptp(f4)) # E: {float32} reveal_type(np.ptp(f)) # E: Any reveal_type(np.ptp(AR_b)) # E: bool_ reveal_type(np.ptp(AR_f4)) # E: {float32} reveal_type(np.ptp(AR_b, axis=0)) # E: Any reveal_type(np.ptp(AR_f4, axis=0)) # E: Any reveal_type(np.ptp(AR_b, keepdims=True)) # E: Any reveal_type(np.ptp(AR_f4, keepdims=True)) # E: Any reveal_type(np.ptp(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.amax(b)) # E: bool_ reveal_type(np.amax(f4)) # E: {float32} reveal_type(np.amax(f)) # E: Any reveal_type(np.amax(AR_b)) # E: bool_ reveal_type(np.amax(AR_f4)) # E: {float32} reveal_type(np.amax(AR_b, axis=0)) # E: Any reveal_type(np.amax(AR_f4, axis=0)) # E: Any reveal_type(np.amax(AR_b, keepdims=True)) # E: Any reveal_type(np.amax(AR_f4, keepdims=True)) # E: Any reveal_type(np.amax(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.amin(b)) # E: bool_ reveal_type(np.amin(f4)) # E: {float32} reveal_type(np.amin(f)) # E: Any reveal_type(np.amin(AR_b)) # E: bool_ reveal_type(np.amin(AR_f4)) # E: {float32} reveal_type(np.amin(AR_b, axis=0)) # E: Any reveal_type(np.amin(AR_f4, axis=0)) # E: Any reveal_type(np.amin(AR_b, keepdims=True)) # E: Any reveal_type(np.amin(AR_f4, keepdims=True)) # E: Any reveal_type(np.amin(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.prod(AR_b)) # E: {int_} reveal_type(np.prod(AR_u8)) # E: {uint64} reveal_type(np.prod(AR_i8)) # E: {int64} reveal_type(np.prod(AR_f4)) # E: floating[Any] reveal_type(np.prod(AR_c16)) # E: complexfloating[Any, Any] reveal_type(np.prod(AR_O)) # E: Any reveal_type(np.prod(AR_f4, axis=0)) # E: Any reveal_type(np.prod(AR_f4, keepdims=True)) # E: Any reveal_type(np.prod(AR_f4, dtype=np.float64)) # E: {float64} reveal_type(np.prod(AR_f4, dtype=float)) # E: Any reveal_type(np.prod(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.cumprod(AR_b)) # E: ndarray[Any, dtype[{int_}]] reveal_type(np.cumprod(AR_u8)) # E: ndarray[Any, dtype[{uint64}]] reveal_type(np.cumprod(AR_i8)) # E: ndarray[Any, dtype[{int64}]] reveal_type(np.cumprod(AR_f4)) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(np.cumprod(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(np.cumprod(AR_O)) # E: ndarray[Any, dtype[object_]] reveal_type(np.cumprod(AR_f4, axis=0)) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(np.cumprod(AR_f4, dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.cumprod(AR_f4, dtype=float)) # E: ndarray[Any, dtype[Any]] reveal_type(np.cumprod(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.ndim(b)) # E: int reveal_type(np.ndim(f4)) # E: int reveal_type(np.ndim(f)) # E: int reveal_type(np.ndim(AR_b)) # E: int reveal_type(np.ndim(AR_f4)) # E: int reveal_type(np.size(b)) # E: int reveal_type(np.size(f4)) # E: int reveal_type(np.size(f)) # E: int reveal_type(np.size(AR_b)) # E: int reveal_type(np.size(AR_f4)) # E: int reveal_type(np.around(b)) # E: {float16} reveal_type(np.around(f)) # E: Any reveal_type(np.around(i8)) # E: {int64} reveal_type(np.around(f4)) # E: {float32} reveal_type(np.around(AR_b)) # E: ndarray[Any, dtype[{float16}]] reveal_type(np.around(AR_i8)) # E: ndarray[Any, dtype[{int64}]] reveal_type(np.around(AR_f4)) # E: ndarray[Any, dtype[{float32}]] reveal_type(np.around([1.5])) # E: ndarray[Any, dtype[Any]] reveal_type(np.around(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.mean(AR_b)) # E: floating[Any] reveal_type(np.mean(AR_i8)) # E: floating[Any] reveal_type(np.mean(AR_f4)) # E: floating[Any] reveal_type(np.mean(AR_c16)) # E: complexfloating[Any, Any] reveal_type(np.mean(AR_O)) # E: Any reveal_type(np.mean(AR_f4, axis=0)) # E: Any reveal_type(np.mean(AR_f4, keepdims=True)) # E: Any reveal_type(np.mean(AR_f4, dtype=float)) # E: Any reveal_type(np.mean(AR_f4, dtype=np.float64)) # E: {float64} reveal_type(np.mean(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.std(AR_b)) # E: floating[Any] reveal_type(np.std(AR_i8)) # E: floating[Any] reveal_type(np.std(AR_f4)) # E: floating[Any] reveal_type(np.std(AR_c16)) # E: floating[Any] reveal_type(np.std(AR_O)) # E: Any reveal_type(np.std(AR_f4, axis=0)) # E: Any reveal_type(np.std(AR_f4, keepdims=True)) # E: Any reveal_type(np.std(AR_f4, dtype=float)) # E: Any reveal_type(np.std(AR_f4, dtype=np.float64)) # E: {float64} reveal_type(np.std(AR_f4, out=AR_subclass)) # E: NDArraySubclass reveal_type(np.var(AR_b)) # E: floating[Any] reveal_type(np.var(AR_i8)) # E: floating[Any] reveal_type(np.var(AR_f4)) # E: floating[Any] reveal_type(np.var(AR_c16)) # E: floating[Any] reveal_type(np.var(AR_O)) # E: Any reveal_type(np.var(AR_f4, axis=0)) # E: Any reveal_type(np.var(AR_f4, keepdims=True)) # E: Any reveal_type(np.var(AR_f4, dtype=float)) # E: Any reveal_type(np.var(AR_f4, dtype=np.float64)) # E: {float64} reveal_type(np.var(AR_f4, out=AR_subclass)) # E: NDArraySubclass
SILENT KILLER Tool