Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > typing > tests > data > > reveal
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
arithmetic.pyi | File | 20805 bytes | April 17 2025 13:10:58. | |
array_constructors.pyi | File | 11831 bytes | April 17 2025 13:10:58. | |
arraypad.pyi | File | 694 bytes | April 17 2025 13:10:58. | |
arrayprint.pyi | File | 686 bytes | April 17 2025 13:10:58. | |
arraysetops.pyi | File | 4671 bytes | April 17 2025 13:10:58. | |
arrayterator.pyi | File | 1128 bytes | April 17 2025 13:10:58. | |
bitwise_ops.pyi | File | 3607 bytes | April 17 2025 13:10:58. | |
char.pyi | File | 8047 bytes | April 17 2025 13:10:58. | |
chararray.pyi | File | 6312 bytes | April 17 2025 13:10:58. | |
comparisons.pyi | File | 8018 bytes | April 17 2025 13:10:58. | |
constants.pyi | File | 1940 bytes | April 17 2025 13:10:58. | |
ctypeslib.pyi | File | 5107 bytes | April 17 2025 13:10:58. | |
datasource.pyi | File | 557 bytes | April 17 2025 13:10:58. | |
dtype.pyi | File | 2787 bytes | April 17 2025 13:10:58. | |
einsumfunc.pyi | File | 2173 bytes | April 17 2025 13:10:58. | |
emath.pyi | File | 2538 bytes | April 17 2025 13:10:58. | |
false_positives.pyi | File | 349 bytes | April 17 2025 13:10:58. | |
fft.pyi | File | 1852 bytes | April 17 2025 13:10:58. | |
flatiter.pyi | File | 819 bytes | April 17 2025 13:10:58. | |
fromnumeric.pyi | File | 13631 bytes | April 17 2025 13:10:58. | |
getlimits.pyi | File | 1547 bytes | April 17 2025 13:10:58. | |
histograms.pyi | File | 1391 bytes | April 17 2025 13:10:58. | |
index_tricks.pyi | File | 3481 bytes | April 17 2025 13:10:58. | |
lib_function_base.pyi | File | 9140 bytes | April 17 2025 13:10:58. | |
lib_polynomial.pyi | File | 6353 bytes | April 17 2025 13:10:58. | |
lib_utils.pyi | File | 917 bytes | April 17 2025 13:10:58. | |
lib_version.pyi | File | 605 bytes | April 17 2025 13:10:58. | |
linalg.pyi | File | 5217 bytes | April 17 2025 13:10:58. | |
matrix.pyi | File | 3033 bytes | April 17 2025 13:10:58. | |
memmap.pyi | File | 755 bytes | April 17 2025 13:10:58. | |
mod.pyi | File | 5989 bytes | April 17 2025 13:10:58. | |
modules.pyi | File | 1994 bytes | April 17 2025 13:10:58. | |
multiarray.pyi | File | 5670 bytes | April 17 2025 13:10:58. | |
nbit_base_example.pyi | File | 500 bytes | April 17 2025 13:10:58. | |
ndarray_conversion.pyi | File | 1913 bytes | April 17 2025 13:10:58. | |
ndarray_misc.pyi | File | 7797 bytes | April 17 2025 13:10:58. | |
ndarray_shape_manipulation.pyi | File | 904 bytes | April 17 2025 13:10:58. | |
nditer.pyi | File | 2067 bytes | April 17 2025 13:10:58. | |
nested_sequence.pyi | File | 648 bytes | April 17 2025 13:10:58. | |
npyio.pyi | File | 4434 bytes | April 17 2025 13:10:58. | |
numeric.pyi | File | 6802 bytes | April 17 2025 13:10:58. | |
numerictypes.pyi | File | 1711 bytes | April 17 2025 13:10:58. | |
random.pyi | File | 129510 bytes | April 17 2025 13:10:58. | |
rec.pyi | File | 3380 bytes | April 17 2025 13:10:58. | |
scalars.pyi | File | 5347 bytes | April 17 2025 13:10:58. | |
shape_base.pyi | File | 2632 bytes | April 17 2025 13:10:58. | |
stride_tricks.pyi | File | 1563 bytes | April 17 2025 13:10:58. | |
testing.pyi | File | 8877 bytes | April 17 2025 13:10:58. | |
twodim_base.pyi | File | 3327 bytes | April 17 2025 13:10:58. | |
type_check.pyi | File | 3031 bytes | April 17 2025 13:10:58. | |
ufunc_config.pyi | File | 1304 bytes | April 17 2025 13:10:58. | |
ufunclike.pyi | File | 1319 bytes | April 17 2025 13:10:58. | |
ufuncs.pyi | File | 2919 bytes | April 17 2025 13:10:58. | |
version.pyi | File | 313 bytes | April 17 2025 13:10:58. | |
warnings_and_errors.pyi | File | 420 bytes | April 17 2025 13:10:58. |
from typing import Any import numpy as np AR_LIKE_b: list[bool] AR_LIKE_i: list[int] AR_LIKE_f: list[float] AR_LIKE_U: list[str] AR_i8: np.ndarray[Any, np.dtype[np.int64]] reveal_type(np.ndenumerate(AR_i8)) # E: ndenumerate[{int64}] reveal_type(np.ndenumerate(AR_LIKE_f)) # E: ndenumerate[{double}] reveal_type(np.ndenumerate(AR_LIKE_U)) # E: ndenumerate[str_] reveal_type(np.ndenumerate(AR_i8).iter) # E: flatiter[ndarray[Any, dtype[{int64}]]] reveal_type(np.ndenumerate(AR_LIKE_f).iter) # E: flatiter[ndarray[Any, dtype[{double}]]] reveal_type(np.ndenumerate(AR_LIKE_U).iter) # E: flatiter[ndarray[Any, dtype[str_]]] reveal_type(next(np.ndenumerate(AR_i8))) # E: Tuple[builtins.tuple[builtins.int, ...], {int64}] reveal_type(next(np.ndenumerate(AR_LIKE_f))) # E: Tuple[builtins.tuple[builtins.int, ...], {double}] reveal_type(next(np.ndenumerate(AR_LIKE_U))) # E: Tuple[builtins.tuple[builtins.int, ...], str_] reveal_type(iter(np.ndenumerate(AR_i8))) # E: ndenumerate[{int64}] reveal_type(iter(np.ndenumerate(AR_LIKE_f))) # E: ndenumerate[{double}] reveal_type(iter(np.ndenumerate(AR_LIKE_U))) # E: ndenumerate[str_] reveal_type(np.ndindex(1, 2, 3)) # E: numpy.ndindex reveal_type(np.ndindex((1, 2, 3))) # E: numpy.ndindex reveal_type(iter(np.ndindex(1, 2, 3))) # E: ndindex reveal_type(next(np.ndindex(1, 2, 3))) # E: builtins.tuple[builtins.int, ...] reveal_type(np.unravel_index([22, 41, 37], (7, 6))) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.unravel_index([31, 41, 13], (7, 6), order="F")) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.unravel_index(1621, (6, 7, 8, 9))) # E: tuple[{intp}, ...] reveal_type(np.ravel_multi_index([[1]], (7, 6))) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6))) # E: {intp} reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6), order="F")) # E: {intp} reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 6), mode="clip")) # E: {intp} reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=("clip", "wrap"))) # E: {intp} reveal_type(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9))) # E: {intp} reveal_type(np.mgrid[1:1:2]) # E: ndarray[Any, dtype[Any]] reveal_type(np.mgrid[1:1:2, None:10]) # E: ndarray[Any, dtype[Any]] reveal_type(np.ogrid[1:1:2]) # E: list[ndarray[Any, dtype[Any]]] reveal_type(np.ogrid[1:1:2, None:10]) # E: list[ndarray[Any, dtype[Any]]] reveal_type(np.index_exp[0:1]) # E: Tuple[builtins.slice] reveal_type(np.index_exp[0:1, None:3]) # E: Tuple[builtins.slice, builtins.slice] reveal_type(np.index_exp[0, 0:1, ..., [0, 1, 3]]) # E: Tuple[Literal[0]?, builtins.slice, builtins.ellipsis, builtins.list[builtins.int]] reveal_type(np.s_[0:1]) # E: builtins.slice reveal_type(np.s_[0:1, None:3]) # E: Tuple[builtins.slice, builtins.slice] reveal_type(np.s_[0, 0:1, ..., [0, 1, 3]]) # E: Tuple[Literal[0]?, builtins.slice, builtins.ellipsis, builtins.list[builtins.int]] reveal_type(np.ix_(AR_LIKE_b)) # E: tuple[ndarray[Any, dtype[bool_]], ...] reveal_type(np.ix_(AR_LIKE_i, AR_LIKE_f)) # E: tuple[ndarray[Any, dtype[{double}]], ...] reveal_type(np.ix_(AR_i8)) # E: tuple[ndarray[Any, dtype[{int64}]], ...] reveal_type(np.fill_diagonal(AR_i8, 5)) # E: None reveal_type(np.diag_indices(4)) # E: tuple[ndarray[Any, dtype[{int_}]], ...] reveal_type(np.diag_indices(2, 3)) # E: tuple[ndarray[Any, dtype[{int_}]], ...] reveal_type(np.diag_indices_from(AR_i8)) # E: tuple[ndarray[Any, dtype[{int_}]], ...]
SILENT KILLER Tool