Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > typing > tests > data > reveal >
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
arithmetic.pyi | File | 20805 bytes | April 17 2025 13:10:58. | |
array_constructors.pyi | File | 11831 bytes | April 17 2025 13:10:58. | |
arraypad.pyi | File | 694 bytes | April 17 2025 13:10:58. | |
arrayprint.pyi | File | 686 bytes | April 17 2025 13:10:58. | |
arraysetops.pyi | File | 4671 bytes | April 17 2025 13:10:58. | |
arrayterator.pyi | File | 1128 bytes | April 17 2025 13:10:58. | |
bitwise_ops.pyi | File | 3607 bytes | April 17 2025 13:10:58. | |
char.pyi | File | 8047 bytes | April 17 2025 13:10:58. | |
chararray.pyi | File | 6312 bytes | April 17 2025 13:10:58. | |
comparisons.pyi | File | 8018 bytes | April 17 2025 13:10:58. | |
constants.pyi | File | 1940 bytes | April 17 2025 13:10:58. | |
ctypeslib.pyi | File | 5107 bytes | April 17 2025 13:10:58. | |
datasource.pyi | File | 557 bytes | April 17 2025 13:10:58. | |
dtype.pyi | File | 2787 bytes | April 17 2025 13:10:58. | |
einsumfunc.pyi | File | 2173 bytes | April 17 2025 13:10:58. | |
emath.pyi | File | 2538 bytes | April 17 2025 13:10:58. | |
false_positives.pyi | File | 349 bytes | April 17 2025 13:10:58. | |
fft.pyi | File | 1852 bytes | April 17 2025 13:10:58. | |
flatiter.pyi | File | 819 bytes | April 17 2025 13:10:58. | |
fromnumeric.pyi | File | 13631 bytes | April 17 2025 13:10:58. | |
getlimits.pyi | File | 1547 bytes | April 17 2025 13:10:58. | |
histograms.pyi | File | 1391 bytes | April 17 2025 13:10:58. | |
index_tricks.pyi | File | 3481 bytes | April 17 2025 13:10:58. | |
lib_function_base.pyi | File | 9140 bytes | April 17 2025 13:10:58. | |
lib_polynomial.pyi | File | 6353 bytes | April 17 2025 13:10:58. | |
lib_utils.pyi | File | 917 bytes | April 17 2025 13:10:58. | |
lib_version.pyi | File | 605 bytes | April 17 2025 13:10:58. | |
linalg.pyi | File | 5217 bytes | April 17 2025 13:10:58. | |
matrix.pyi | File | 3033 bytes | April 17 2025 13:10:58. | |
memmap.pyi | File | 755 bytes | April 17 2025 13:10:58. | |
mod.pyi | File | 5989 bytes | April 17 2025 13:10:58. | |
modules.pyi | File | 1994 bytes | April 17 2025 13:10:58. | |
multiarray.pyi | File | 5670 bytes | April 17 2025 13:10:58. | |
nbit_base_example.pyi | File | 500 bytes | April 17 2025 13:10:58. | |
ndarray_conversion.pyi | File | 1913 bytes | April 17 2025 13:10:58. | |
ndarray_misc.pyi | File | 7797 bytes | April 17 2025 13:10:58. | |
ndarray_shape_manipulation.pyi | File | 904 bytes | April 17 2025 13:10:58. | |
nditer.pyi | File | 2067 bytes | April 17 2025 13:10:58. | |
nested_sequence.pyi | File | 648 bytes | April 17 2025 13:10:58. | |
npyio.pyi | File | 4434 bytes | April 17 2025 13:10:58. | |
numeric.pyi | File | 6802 bytes | April 17 2025 13:10:58. | |
numerictypes.pyi | File | 1711 bytes | April 17 2025 13:10:58. | |
random.pyi | File | 129510 bytes | April 17 2025 13:10:58. | |
rec.pyi | File | 3380 bytes | April 17 2025 13:10:58. | |
scalars.pyi | File | 5347 bytes | April 17 2025 13:10:58. | |
shape_base.pyi | File | 2632 bytes | April 17 2025 13:10:58. | |
stride_tricks.pyi | File | 1563 bytes | April 17 2025 13:10:58. | |
testing.pyi | File | 8877 bytes | April 17 2025 13:10:58. | |
twodim_base.pyi | File | 3327 bytes | April 17 2025 13:10:58. | |
type_check.pyi | File | 3031 bytes | April 17 2025 13:10:58. | |
ufunc_config.pyi | File | 1304 bytes | April 17 2025 13:10:58. | |
ufunclike.pyi | File | 1319 bytes | April 17 2025 13:10:58. | |
ufuncs.pyi | File | 2919 bytes | April 17 2025 13:10:58. | |
version.pyi | File | 313 bytes | April 17 2025 13:10:58. | |
warnings_and_errors.pyi | File | 420 bytes | April 17 2025 13:10:58. |
import datetime as dt from typing import Any, TypeVar from pathlib import Path import numpy as np import numpy.typing as npt _SCT = TypeVar("_SCT", bound=np.generic, covariant=True) class SubClass(np.ndarray[Any, np.dtype[_SCT]]): ... subclass: SubClass[np.float64] AR_f8: npt.NDArray[np.float64] AR_i8: npt.NDArray[np.int64] AR_u1: npt.NDArray[np.uint8] AR_m: npt.NDArray[np.timedelta64] AR_M: npt.NDArray[np.datetime64] AR_LIKE_f: list[float] AR_LIKE_i: list[int] m: np.timedelta64 M: np.datetime64 b_f8 = np.broadcast(AR_f8) b_i8_f8_f8 = np.broadcast(AR_i8, AR_f8, AR_f8) nditer_obj: np.nditer date_scalar: dt.date date_seq: list[dt.date] timedelta_seq: list[dt.timedelta] def func(a: int) -> bool: ... reveal_type(next(b_f8)) # E: tuple[Any, ...] reveal_type(b_f8.reset()) # E: None reveal_type(b_f8.index) # E: int reveal_type(b_f8.iters) # E: tuple[flatiter[Any], ...] reveal_type(b_f8.nd) # E: int reveal_type(b_f8.ndim) # E: int reveal_type(b_f8.numiter) # E: int reveal_type(b_f8.shape) # E: tuple[builtins.int, ...] reveal_type(b_f8.size) # E: int reveal_type(next(b_i8_f8_f8)) # E: tuple[Any, ...] reveal_type(b_i8_f8_f8.reset()) # E: None reveal_type(b_i8_f8_f8.index) # E: int reveal_type(b_i8_f8_f8.iters) # E: tuple[flatiter[Any], ...] reveal_type(b_i8_f8_f8.nd) # E: int reveal_type(b_i8_f8_f8.ndim) # E: int reveal_type(b_i8_f8_f8.numiter) # E: int reveal_type(b_i8_f8_f8.shape) # E: tuple[builtins.int, ...] reveal_type(b_i8_f8_f8.size) # E: int reveal_type(np.inner(AR_f8, AR_i8)) # E: Any reveal_type(np.where([True, True, False])) # E: tuple[ndarray[Any, dtype[{intp}]], ...] reveal_type(np.where([True, True, False], 1, 0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.lexsort([0, 1, 2])) # E: Any reveal_type(np.can_cast(np.dtype("i8"), int)) # E: bool reveal_type(np.can_cast(AR_f8, "f8")) # E: bool reveal_type(np.can_cast(AR_f8, np.complex128, casting="unsafe")) # E: bool reveal_type(np.min_scalar_type([1])) # E: dtype[Any] reveal_type(np.min_scalar_type(AR_f8)) # E: dtype[Any] reveal_type(np.result_type(int, [1])) # E: dtype[Any] reveal_type(np.result_type(AR_f8, AR_u1)) # E: dtype[Any] reveal_type(np.result_type(AR_f8, np.complex128)) # E: dtype[Any] reveal_type(np.dot(AR_LIKE_f, AR_i8)) # E: Any reveal_type(np.dot(AR_u1, 1)) # E: Any reveal_type(np.dot(1.5j, 1)) # E: Any reveal_type(np.dot(AR_u1, 1, out=AR_f8)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.vdot(AR_LIKE_f, AR_i8)) # E: floating[Any] reveal_type(np.vdot(AR_u1, 1)) # E: signedinteger[Any] reveal_type(np.vdot(1.5j, 1)) # E: complexfloating[Any, Any] reveal_type(np.bincount(AR_i8)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.copyto(AR_f8, [1., 1.5, 1.6])) # E: None reveal_type(np.putmask(AR_f8, [True, True, False], 1.5)) # E: None reveal_type(np.packbits(AR_i8)) # ndarray[Any, dtype[{uint8}]] reveal_type(np.packbits(AR_u1)) # ndarray[Any, dtype[{uint8}]] reveal_type(np.unpackbits(AR_u1)) # ndarray[Any, dtype[{uint8}]] reveal_type(np.shares_memory(1, 2)) # E: bool reveal_type(np.shares_memory(AR_f8, AR_f8, max_work=1)) # E: bool reveal_type(np.may_share_memory(1, 2)) # E: bool reveal_type(np.may_share_memory(AR_f8, AR_f8, max_work=1)) # E: bool reveal_type(np.geterrobj()) # E: list[Any] reveal_type(np.seterrobj([8192, 521, None])) # E: None reveal_type(np.promote_types(np.int32, np.int64)) # E: dtype[Any] reveal_type(np.promote_types("f4", float)) # E: dtype[Any] reveal_type(np.frompyfunc(func, 1, 1, identity=None)) # ufunc reveal_type(np.datetime_data("m8[D]")) # E: Tuple[builtins.str, builtins.int] reveal_type(np.datetime_data(np.datetime64)) # E: Tuple[builtins.str, builtins.int] reveal_type(np.datetime_data(np.dtype(np.timedelta64))) # E: Tuple[builtins.str, builtins.int] reveal_type(np.busday_count("2011-01", "2011-02")) # E: {int_} reveal_type(np.busday_count(["2011-01"], "2011-02")) # E: ndarray[Any, dtype[{int_}]] reveal_type(np.busday_count(["2011-01"], date_scalar)) # E: ndarray[Any, dtype[{int_}]] reveal_type(np.busday_offset(M, m)) # E: datetime64 reveal_type(np.busday_offset(date_scalar, m)) # E: datetime64 reveal_type(np.busday_offset(M, 5)) # E: datetime64 reveal_type(np.busday_offset(AR_M, m)) # E: ndarray[Any, dtype[datetime64]] reveal_type(np.busday_offset(M, timedelta_seq)) # E: ndarray[Any, dtype[datetime64]] reveal_type(np.busday_offset("2011-01", "2011-02", roll="forward")) # E: datetime64 reveal_type(np.busday_offset(["2011-01"], "2011-02", roll="forward")) # E: ndarray[Any, dtype[datetime64]] reveal_type(np.is_busday("2012")) # E: bool_ reveal_type(np.is_busday(date_scalar)) # E: bool_ reveal_type(np.is_busday(["2012"])) # E: ndarray[Any, dtype[bool_]] reveal_type(np.datetime_as_string(M)) # E: str_ reveal_type(np.datetime_as_string(AR_M)) # E: ndarray[Any, dtype[str_]] reveal_type(np.busdaycalendar(holidays=date_seq)) # E: busdaycalendar reveal_type(np.busdaycalendar(holidays=[M])) # E: busdaycalendar reveal_type(np.compare_chararrays("a", "b", "!=", rstrip=False)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.compare_chararrays(b"a", b"a", "==", True)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.add_docstring(func, "test")) # E: None reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], flags=["c_index"])) # E: tuple[nditer, ...] reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_flags=[["readonly", "readonly"]])) # E: tuple[nditer, ...] reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_dtypes=np.int_)) # E: tuple[nditer, ...] reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], order="C", casting="no")) # E: tuple[nditer, ...]
SILENT KILLER Tool