SILENT KILLERPanel

Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > typing > tests > data > reveal >


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/typing/tests/data/reveal/

NameTypeSizeLast ModifiedActions
arithmetic.pyi File 20805 bytes April 17 2025 13:10:58.
array_constructors.pyi File 11831 bytes April 17 2025 13:10:58.
arraypad.pyi File 694 bytes April 17 2025 13:10:58.
arrayprint.pyi File 686 bytes April 17 2025 13:10:58.
arraysetops.pyi File 4671 bytes April 17 2025 13:10:58.
arrayterator.pyi File 1128 bytes April 17 2025 13:10:58.
bitwise_ops.pyi File 3607 bytes April 17 2025 13:10:58.
char.pyi File 8047 bytes April 17 2025 13:10:58.
chararray.pyi File 6312 bytes April 17 2025 13:10:58.
comparisons.pyi File 8018 bytes April 17 2025 13:10:58.
constants.pyi File 1940 bytes April 17 2025 13:10:58.
ctypeslib.pyi File 5107 bytes April 17 2025 13:10:58.
datasource.pyi File 557 bytes April 17 2025 13:10:58.
dtype.pyi File 2787 bytes April 17 2025 13:10:58.
einsumfunc.pyi File 2173 bytes April 17 2025 13:10:58.
emath.pyi File 2538 bytes April 17 2025 13:10:58.
false_positives.pyi File 349 bytes April 17 2025 13:10:58.
fft.pyi File 1852 bytes April 17 2025 13:10:58.
flatiter.pyi File 819 bytes April 17 2025 13:10:58.
fromnumeric.pyi File 13631 bytes April 17 2025 13:10:58.
getlimits.pyi File 1547 bytes April 17 2025 13:10:58.
histograms.pyi File 1391 bytes April 17 2025 13:10:58.
index_tricks.pyi File 3481 bytes April 17 2025 13:10:58.
lib_function_base.pyi File 9140 bytes April 17 2025 13:10:58.
lib_polynomial.pyi File 6353 bytes April 17 2025 13:10:58.
lib_utils.pyi File 917 bytes April 17 2025 13:10:58.
lib_version.pyi File 605 bytes April 17 2025 13:10:58.
linalg.pyi File 5217 bytes April 17 2025 13:10:58.
matrix.pyi File 3033 bytes April 17 2025 13:10:58.
memmap.pyi File 755 bytes April 17 2025 13:10:58.
mod.pyi File 5989 bytes April 17 2025 13:10:58.
modules.pyi File 1994 bytes April 17 2025 13:10:58.
multiarray.pyi File 5670 bytes April 17 2025 13:10:58.
nbit_base_example.pyi File 500 bytes April 17 2025 13:10:58.
ndarray_conversion.pyi File 1913 bytes April 17 2025 13:10:58.
ndarray_misc.pyi File 7797 bytes April 17 2025 13:10:58.
ndarray_shape_manipulation.pyi File 904 bytes April 17 2025 13:10:58.
nditer.pyi File 2067 bytes April 17 2025 13:10:58.
nested_sequence.pyi File 648 bytes April 17 2025 13:10:58.
npyio.pyi File 4434 bytes April 17 2025 13:10:58.
numeric.pyi File 6802 bytes April 17 2025 13:10:58.
numerictypes.pyi File 1711 bytes April 17 2025 13:10:58.
random.pyi File 129510 bytes April 17 2025 13:10:58.
rec.pyi File 3380 bytes April 17 2025 13:10:58.
scalars.pyi File 5347 bytes April 17 2025 13:10:58.
shape_base.pyi File 2632 bytes April 17 2025 13:10:58.
stride_tricks.pyi File 1563 bytes April 17 2025 13:10:58.
testing.pyi File 8877 bytes April 17 2025 13:10:58.
twodim_base.pyi File 3327 bytes April 17 2025 13:10:58.
type_check.pyi File 3031 bytes April 17 2025 13:10:58.
ufunc_config.pyi File 1304 bytes April 17 2025 13:10:58.
ufunclike.pyi File 1319 bytes April 17 2025 13:10:58.
ufuncs.pyi File 2919 bytes April 17 2025 13:10:58.
version.pyi File 313 bytes April 17 2025 13:10:58.
warnings_and_errors.pyi File 420 bytes April 17 2025 13:10:58.

Reading File: //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/typing/tests/data/reveal//rec.pyi

import io
from typing import Any

import numpy as np
import numpy.typing as npt

AR_i8: npt.NDArray[np.int64]
REC_AR_V: np.recarray[Any, np.dtype[np.record]]
AR_LIST: list[npt.NDArray[np.int64]]

format_parser: np.format_parser
record: np.record
file_obj: io.BufferedIOBase

reveal_type(np.format_parser(  # E: format_parser
    formats=[np.float64, np.int64, np.bool_],
    names=["f8", "i8", "?"],
    titles=None,
    aligned=True,
))
reveal_type(format_parser.dtype)  # E: dtype[void]

reveal_type(record.field_a)  # E: Any
reveal_type(record.field_b)  # E: Any
reveal_type(record["field_a"])  # E: Any
reveal_type(record["field_b"])  # E: Any
reveal_type(record.pprint())  # E: str
record.field_c = 5

reveal_type(REC_AR_V.field(0))  # E: Any
reveal_type(REC_AR_V.field("field_a"))  # E: Any
reveal_type(REC_AR_V.field(0, AR_i8))  # E: None
reveal_type(REC_AR_V.field("field_a", AR_i8))  # E: None
reveal_type(REC_AR_V["field_a"])  # E: Any
reveal_type(REC_AR_V.field_a)  # E: Any
reveal_type(REC_AR_V.__array_finalize__(object()))  # E: None

reveal_type(np.recarray(  # recarray[Any, dtype[record]]
    shape=(10, 5),
    formats=[np.float64, np.int64, np.bool_],
    order="K",
    byteorder="|",
))
reveal_type(np.recarray(  # recarray[Any, dtype[Any]]
    shape=(10, 5),
    dtype=[("f8", np.float64), ("i8", np.int64)],
    strides=(5, 5),
))

reveal_type(np.rec.fromarrays(  # recarray[Any, dtype[record]]
    AR_LIST,
))
reveal_type(np.rec.fromarrays(  # recarray[Any, dtype[Any]]
    AR_LIST,
    dtype=np.int64,
))
reveal_type(np.rec.fromarrays(  # recarray[Any, dtype[Any]]
    AR_LIST,
    formats=[np.int64, np.float64],
    names=["i8", "f8"]
))

reveal_type(np.rec.fromrecords(  # recarray[Any, dtype[record]]
    (1, 1.5),
))
reveal_type(np.rec.fromrecords(  # recarray[Any, dtype[record]]
    [(1, 1.5)],
    dtype=[("i8", np.int64), ("f8", np.float64)],
))
reveal_type(np.rec.fromrecords(  # recarray[Any, dtype[record]]
    REC_AR_V,
    formats=[np.int64, np.float64],
    names=["i8", "f8"]
))

reveal_type(np.rec.fromstring(  # recarray[Any, dtype[record]]
    b"(1, 1.5)",
    dtype=[("i8", np.int64), ("f8", np.float64)],
))
reveal_type(np.rec.fromstring(  # recarray[Any, dtype[record]]
    REC_AR_V,
    formats=[np.int64, np.float64],
    names=["i8", "f8"]
))

reveal_type(np.rec.fromfile(  # recarray[Any, dtype[Any]]
    "test_file.txt",
    dtype=[("i8", np.int64), ("f8", np.float64)],
))
reveal_type(np.rec.fromfile(  # recarray[Any, dtype[record]]
    file_obj,
    formats=[np.int64, np.float64],
    names=["i8", "f8"]
))

reveal_type(np.rec.array(  # recarray[Any, dtype[{int64}]]
    AR_i8,
))
reveal_type(np.rec.array(  # recarray[Any, dtype[Any]]
    [(1, 1.5)],
    dtype=[("i8", np.int64), ("f8", np.float64)],
))
reveal_type(np.rec.array(  # recarray[Any, dtype[record]]
    [(1, 1.5)],
    formats=[np.int64, np.float64],
    names=["i8", "f8"]
))

reveal_type(np.rec.array(  # recarray[Any, dtype[Any]]
    None,
    dtype=np.float64,
    shape=(10, 3),
))
reveal_type(np.rec.array(  # recarray[Any, dtype[Any]]
    None,
    formats=[np.int64, np.float64],
    names=["i8", "f8"],
    shape=(10, 3),
))
reveal_type(np.rec.array(  # recarray[Any, dtype[Any]]
    file_obj,
    dtype=np.float64,
))
reveal_type(np.rec.array(  # recarray[Any, dtype[Any]]
    file_obj,
    formats=[np.int64, np.float64],
    names=["i8", "f8"],
))

SILENT KILLER Tool