SILENT KILLERPanel

Current Path: > > opt > cloudlinux > venv > lib > python3.11 > site-packages > numpy > typing > tests > data > reveal


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/typing/tests/data/reveal

NameTypeSizeLast ModifiedActions
arithmetic.pyi File 20805 bytes April 17 2025 13:10:58.
array_constructors.pyi File 11831 bytes April 17 2025 13:10:58.
arraypad.pyi File 694 bytes April 17 2025 13:10:58.
arrayprint.pyi File 686 bytes April 17 2025 13:10:58.
arraysetops.pyi File 4671 bytes April 17 2025 13:10:58.
arrayterator.pyi File 1128 bytes April 17 2025 13:10:58.
bitwise_ops.pyi File 3607 bytes April 17 2025 13:10:58.
char.pyi File 8047 bytes April 17 2025 13:10:58.
chararray.pyi File 6312 bytes April 17 2025 13:10:58.
comparisons.pyi File 8018 bytes April 17 2025 13:10:58.
constants.pyi File 1940 bytes April 17 2025 13:10:58.
ctypeslib.pyi File 5107 bytes April 17 2025 13:10:58.
datasource.pyi File 557 bytes April 17 2025 13:10:58.
dtype.pyi File 2787 bytes April 17 2025 13:10:58.
einsumfunc.pyi File 2173 bytes April 17 2025 13:10:58.
emath.pyi File 2538 bytes April 17 2025 13:10:58.
false_positives.pyi File 349 bytes April 17 2025 13:10:58.
fft.pyi File 1852 bytes April 17 2025 13:10:58.
flatiter.pyi File 819 bytes April 17 2025 13:10:58.
fromnumeric.pyi File 13631 bytes April 17 2025 13:10:58.
getlimits.pyi File 1547 bytes April 17 2025 13:10:58.
histograms.pyi File 1391 bytes April 17 2025 13:10:58.
index_tricks.pyi File 3481 bytes April 17 2025 13:10:58.
lib_function_base.pyi File 9140 bytes April 17 2025 13:10:58.
lib_polynomial.pyi File 6353 bytes April 17 2025 13:10:58.
lib_utils.pyi File 917 bytes April 17 2025 13:10:58.
lib_version.pyi File 605 bytes April 17 2025 13:10:58.
linalg.pyi File 5217 bytes April 17 2025 13:10:58.
matrix.pyi File 3033 bytes April 17 2025 13:10:58.
memmap.pyi File 755 bytes April 17 2025 13:10:58.
mod.pyi File 5989 bytes April 17 2025 13:10:58.
modules.pyi File 1994 bytes April 17 2025 13:10:58.
multiarray.pyi File 5670 bytes April 17 2025 13:10:58.
nbit_base_example.pyi File 500 bytes April 17 2025 13:10:58.
ndarray_conversion.pyi File 1913 bytes April 17 2025 13:10:58.
ndarray_misc.pyi File 7797 bytes April 17 2025 13:10:58.
ndarray_shape_manipulation.pyi File 904 bytes April 17 2025 13:10:58.
nditer.pyi File 2067 bytes April 17 2025 13:10:58.
nested_sequence.pyi File 648 bytes April 17 2025 13:10:58.
npyio.pyi File 4434 bytes April 17 2025 13:10:58.
numeric.pyi File 6802 bytes April 17 2025 13:10:58.
numerictypes.pyi File 1711 bytes April 17 2025 13:10:58.
random.pyi File 129510 bytes April 17 2025 13:10:58.
rec.pyi File 3380 bytes April 17 2025 13:10:58.
scalars.pyi File 5347 bytes April 17 2025 13:10:58.
shape_base.pyi File 2632 bytes April 17 2025 13:10:58.
stride_tricks.pyi File 1563 bytes April 17 2025 13:10:58.
testing.pyi File 8877 bytes April 17 2025 13:10:58.
twodim_base.pyi File 3327 bytes April 17 2025 13:10:58.
type_check.pyi File 3031 bytes April 17 2025 13:10:58.
ufunc_config.pyi File 1304 bytes April 17 2025 13:10:58.
ufunclike.pyi File 1319 bytes April 17 2025 13:10:58.
ufuncs.pyi File 2919 bytes April 17 2025 13:10:58.
version.pyi File 313 bytes April 17 2025 13:10:58.
warnings_and_errors.pyi File 420 bytes April 17 2025 13:10:58.

Reading File: //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/typing/tests/data/reveal/index_tricks.pyi

from typing import Any
import numpy as np

AR_LIKE_b: list[bool]
AR_LIKE_i: list[int]
AR_LIKE_f: list[float]
AR_LIKE_U: list[str]

AR_i8: np.ndarray[Any, np.dtype[np.int64]]

reveal_type(np.ndenumerate(AR_i8))  # E: ndenumerate[{int64}]
reveal_type(np.ndenumerate(AR_LIKE_f))  # E: ndenumerate[{double}]
reveal_type(np.ndenumerate(AR_LIKE_U))  # E: ndenumerate[str_]

reveal_type(np.ndenumerate(AR_i8).iter)  # E: flatiter[ndarray[Any, dtype[{int64}]]]
reveal_type(np.ndenumerate(AR_LIKE_f).iter)  # E: flatiter[ndarray[Any, dtype[{double}]]]
reveal_type(np.ndenumerate(AR_LIKE_U).iter)  # E: flatiter[ndarray[Any, dtype[str_]]]

reveal_type(next(np.ndenumerate(AR_i8)))  # E: Tuple[builtins.tuple[builtins.int, ...], {int64}]
reveal_type(next(np.ndenumerate(AR_LIKE_f)))  # E: Tuple[builtins.tuple[builtins.int, ...], {double}]
reveal_type(next(np.ndenumerate(AR_LIKE_U)))  # E: Tuple[builtins.tuple[builtins.int, ...], str_]

reveal_type(iter(np.ndenumerate(AR_i8)))  # E: ndenumerate[{int64}]
reveal_type(iter(np.ndenumerate(AR_LIKE_f)))  # E: ndenumerate[{double}]
reveal_type(iter(np.ndenumerate(AR_LIKE_U)))  # E: ndenumerate[str_]

reveal_type(np.ndindex(1, 2, 3))  # E: numpy.ndindex
reveal_type(np.ndindex((1, 2, 3)))  # E: numpy.ndindex
reveal_type(iter(np.ndindex(1, 2, 3)))  # E: ndindex
reveal_type(next(np.ndindex(1, 2, 3)))  # E: builtins.tuple[builtins.int, ...]

reveal_type(np.unravel_index([22, 41, 37], (7, 6)))  # E: tuple[ndarray[Any, dtype[{intp}]], ...]
reveal_type(np.unravel_index([31, 41, 13], (7, 6), order="F"))  # E: tuple[ndarray[Any, dtype[{intp}]], ...]
reveal_type(np.unravel_index(1621, (6, 7, 8, 9)))  # E: tuple[{intp}, ...]

reveal_type(np.ravel_multi_index([[1]], (7, 6)))  # E: ndarray[Any, dtype[{intp}]]
reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6)))  # E: {intp}
reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6), order="F"))  # E: {intp}
reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 6), mode="clip"))  # E: {intp}
reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=("clip", "wrap")))  # E: {intp}
reveal_type(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)))  # E: {intp}

reveal_type(np.mgrid[1:1:2])  # E: ndarray[Any, dtype[Any]]
reveal_type(np.mgrid[1:1:2, None:10])  # E: ndarray[Any, dtype[Any]]

reveal_type(np.ogrid[1:1:2])  # E: list[ndarray[Any, dtype[Any]]]
reveal_type(np.ogrid[1:1:2, None:10])  # E: list[ndarray[Any, dtype[Any]]]

reveal_type(np.index_exp[0:1])  # E: Tuple[builtins.slice]
reveal_type(np.index_exp[0:1, None:3])  # E: Tuple[builtins.slice, builtins.slice]
reveal_type(np.index_exp[0, 0:1, ..., [0, 1, 3]])  # E: Tuple[Literal[0]?, builtins.slice, builtins.ellipsis, builtins.list[builtins.int]]

reveal_type(np.s_[0:1])  # E: builtins.slice
reveal_type(np.s_[0:1, None:3])  # E: Tuple[builtins.slice, builtins.slice]
reveal_type(np.s_[0, 0:1, ..., [0, 1, 3]])  # E: Tuple[Literal[0]?, builtins.slice, builtins.ellipsis, builtins.list[builtins.int]]

reveal_type(np.ix_(AR_LIKE_b))  # E: tuple[ndarray[Any, dtype[bool_]], ...]
reveal_type(np.ix_(AR_LIKE_i, AR_LIKE_f))  # E: tuple[ndarray[Any, dtype[{double}]], ...]
reveal_type(np.ix_(AR_i8))  # E: tuple[ndarray[Any, dtype[{int64}]], ...]

reveal_type(np.fill_diagonal(AR_i8, 5))  # E: None

reveal_type(np.diag_indices(4))  # E: tuple[ndarray[Any, dtype[{int_}]], ...]
reveal_type(np.diag_indices(2, 3))  # E: tuple[ndarray[Any, dtype[{int_}]], ...]

reveal_type(np.diag_indices_from(AR_i8))  # E: tuple[ndarray[Any, dtype[{int_}]], ...]

SILENT KILLER Tool