SILENT KILLERPanel

Current Path: > > opt > cloudlinux > venv > lib64 > python3.11 > > > site-packages > numpy > ma


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/cloudlinux/venv/lib64/python3.11///site-packages/numpy/ma

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
tests Directory - -
__init__.py File 1404 bytes April 17 2025 13:10:58.
__init__.pyi File 6063 bytes April 17 2025 13:10:58.
core.py File 278022 bytes April 17 2025 13:10:58.
core.pyi File 14305 bytes April 17 2025 13:10:58.
extras.py File 64383 bytes April 17 2025 13:10:58.
extras.pyi File 2646 bytes April 17 2025 13:10:58.
mrecords.py File 27232 bytes April 17 2025 13:10:58.
mrecords.pyi File 1934 bytes April 17 2025 13:10:58.
setup.py File 418 bytes April 17 2025 13:10:58.
testutils.py File 10235 bytes April 17 2025 13:10:58.
timer_comparison.py File 15658 bytes April 17 2025 13:10:58.

Reading File: //opt/cloudlinux/venv/lib64/python3.11///site-packages/numpy/ma/__init__.py

"""
=============
Masked Arrays
=============

Arrays sometimes contain invalid or missing data.  When doing operations
on such arrays, we wish to suppress invalid values, which is the purpose masked
arrays fulfill (an example of typical use is given below).

For example, examine the following array:

>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])

When we try to calculate the mean of the data, the result is undetermined:

>>> np.mean(x)
nan

The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work.  Enter
masked arrays:

>>> m = np.ma.masked_array(x, np.isnan(x))
>>> m
masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
      mask = [False False False  True False False False  True],
      fill_value=1e+20)

Here, we construct a masked array that suppress all ``NaN`` values.  We
may now proceed to calculate the mean of the other values:

>>> np.mean(m)
2.6666666666666665

.. [1] Not-a-Number, a floating point value that is the result of an
       invalid operation.

.. moduleauthor:: Pierre Gerard-Marchant
.. moduleauthor:: Jarrod Millman

"""
from . import core
from .core import *

from . import extras
from .extras import *

__all__ = ['core', 'extras']
__all__ += core.__all__
__all__ += extras.__all__

from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester

SILENT KILLER Tool