Current Path: > > opt > cloudlinux > venv > lib64 > python3.11 > > site-packages > numpy > lib
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
__pycache__ | Directory | - | - | |
tests | Directory | - | - | |
__init__.py | File | 2763 bytes | April 17 2025 13:10:58. | |
__init__.pyi | File | 5596 bytes | April 17 2025 13:10:58. | |
_datasource.py | File | 22631 bytes | April 17 2025 13:10:58. | |
_iotools.py | File | 30868 bytes | April 17 2025 13:10:58. | |
_version.py | File | 4855 bytes | April 17 2025 13:10:58. | |
_version.pyi | File | 633 bytes | April 17 2025 13:10:58. | |
arraypad.py | File | 31803 bytes | April 17 2025 13:10:58. | |
arraypad.pyi | File | 1728 bytes | April 17 2025 13:10:58. | |
arraysetops.py | File | 33655 bytes | April 17 2025 13:10:58. | |
arraysetops.pyi | File | 8337 bytes | April 17 2025 13:10:58. | |
arrayterator.py | File | 7063 bytes | April 17 2025 13:10:58. | |
arrayterator.pyi | File | 1537 bytes | April 17 2025 13:10:58. | |
format.py | File | 34769 bytes | April 17 2025 13:10:58. | |
format.pyi | File | 748 bytes | April 17 2025 13:10:58. | |
function_base.py | File | 189103 bytes | April 17 2025 13:10:58. | |
function_base.pyi | File | 16585 bytes | April 17 2025 13:10:58. | |
histograms.py | File | 37697 bytes | April 17 2025 13:10:58. | |
histograms.pyi | File | 995 bytes | April 17 2025 13:10:58. | |
index_tricks.py | File | 31346 bytes | April 17 2025 13:10:58. | |
index_tricks.pyi | File | 4251 bytes | April 17 2025 13:10:58. | |
mixins.py | File | 7071 bytes | April 17 2025 13:10:58. | |
mixins.pyi | File | 3117 bytes | April 17 2025 13:10:58. | |
nanfunctions.py | File | 65775 bytes | April 17 2025 13:10:58. | |
nanfunctions.pyi | File | 606 bytes | April 17 2025 13:10:58. | |
npyio.py | File | 97316 bytes | April 17 2025 13:10:58. | |
npyio.pyi | File | 9728 bytes | April 17 2025 13:10:58. | |
polynomial.py | File | 44133 bytes | April 17 2025 13:10:58. | |
polynomial.pyi | File | 6958 bytes | April 17 2025 13:10:58. | |
recfunctions.py | File | 59423 bytes | April 17 2025 13:10:58. | |
scimath.py | File | 15037 bytes | April 17 2025 13:10:58. | |
scimath.pyi | File | 2883 bytes | April 17 2025 13:10:58. | |
setup.py | File | 405 bytes | April 17 2025 13:10:58. | |
shape_base.py | File | 38947 bytes | April 17 2025 13:10:58. | |
shape_base.pyi | File | 5184 bytes | April 17 2025 13:10:58. | |
stride_tricks.py | File | 17911 bytes | April 17 2025 13:10:58. | |
stride_tricks.pyi | File | 1747 bytes | April 17 2025 13:10:58. | |
twodim_base.py | File | 32947 bytes | April 17 2025 13:10:58. | |
twodim_base.pyi | File | 5370 bytes | April 17 2025 13:10:58. | |
type_check.py | File | 19954 bytes | April 17 2025 13:10:58. | |
type_check.pyi | File | 5571 bytes | April 17 2025 13:10:58. | |
ufunclike.py | File | 6325 bytes | April 17 2025 13:10:58. | |
ufunclike.pyi | File | 1293 bytes | April 17 2025 13:10:58. | |
user_array.py | File | 7721 bytes | April 17 2025 13:10:58. | |
utils.py | File | 37804 bytes | April 17 2025 13:10:58. | |
utils.pyi | File | 2360 bytes | April 17 2025 13:10:58. |
from typing import ( Literal as L, Any, TypeVar, overload, SupportsIndex, ) from numpy import ( generic, number, bool_, ushort, ubyte, uintc, uint, ulonglong, short, int8, byte, intc, int_, intp, longlong, half, single, double, longdouble, csingle, cdouble, clongdouble, timedelta64, datetime64, object_, str_, bytes_, void, ) from numpy._typing import ( ArrayLike, NDArray, _ArrayLike, _ArrayLikeBool_co, _ArrayLikeDT64_co, _ArrayLikeTD64_co, _ArrayLikeObject_co, _ArrayLikeNumber_co, ) _SCT = TypeVar("_SCT", bound=generic) _NumberType = TypeVar("_NumberType", bound=number[Any]) # Explicitly set all allowed values to prevent accidental castings to # abstract dtypes (their common super-type). # # Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`) # which could result in, for example, `int64` and `float64`producing a # `number[_64Bit]` array _SCTNoCast = TypeVar( "_SCTNoCast", bool_, ushort, ubyte, uintc, uint, ulonglong, short, byte, intc, int_, longlong, half, single, double, longdouble, csingle, cdouble, clongdouble, timedelta64, datetime64, object_, str_, bytes_, void, ) __all__: list[str] @overload def ediff1d( ary: _ArrayLikeBool_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[int8]: ... @overload def ediff1d( ary: _ArrayLike[_NumberType], to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[_NumberType]: ... @overload def ediff1d( ary: _ArrayLikeNumber_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[Any]: ... @overload def ediff1d( ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[timedelta64]: ... @overload def ediff1d( ary: _ArrayLikeObject_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[object_]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> NDArray[_SCT]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> NDArray[Any]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]: ... @overload def intersect1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[False] = ..., ) -> NDArray[_SCTNoCast]: ... @overload def intersect1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[False] = ..., ) -> NDArray[Any]: ... @overload def intersect1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[True] = ..., ) -> tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]: ... @overload def intersect1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[True] = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def setxor1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., ) -> NDArray[_SCTNoCast]: ... @overload def setxor1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., ) -> NDArray[Any]: ... def in1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., invert: bool = ..., ) -> NDArray[bool_]: ... def isin( element: ArrayLike, test_elements: ArrayLike, assume_unique: bool = ..., invert: bool = ..., ) -> NDArray[bool_]: ... @overload def union1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], ) -> NDArray[_SCTNoCast]: ... @overload def union1d( ar1: ArrayLike, ar2: ArrayLike, ) -> NDArray[Any]: ... @overload def setdiff1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., ) -> NDArray[_SCTNoCast]: ... @overload def setdiff1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., ) -> NDArray[Any]: ...
SILENT KILLER Tool