SILENT KILLERPanel

Current Path: > > opt > cloudlinux > venv > lib64 > python3.11 > > site-packages > numpy > typing > tests > > data > reveal


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/cloudlinux/venv/lib64/python3.11//site-packages/numpy/typing/tests//data/reveal

NameTypeSizeLast ModifiedActions
arithmetic.pyi File 20805 bytes April 17 2025 13:10:58.
array_constructors.pyi File 11831 bytes April 17 2025 13:10:58.
arraypad.pyi File 694 bytes April 17 2025 13:10:58.
arrayprint.pyi File 686 bytes April 17 2025 13:10:58.
arraysetops.pyi File 4671 bytes April 17 2025 13:10:58.
arrayterator.pyi File 1128 bytes April 17 2025 13:10:58.
bitwise_ops.pyi File 3607 bytes April 17 2025 13:10:58.
char.pyi File 8047 bytes April 17 2025 13:10:58.
chararray.pyi File 6312 bytes April 17 2025 13:10:58.
comparisons.pyi File 8018 bytes April 17 2025 13:10:58.
constants.pyi File 1940 bytes April 17 2025 13:10:58.
ctypeslib.pyi File 5107 bytes April 17 2025 13:10:58.
datasource.pyi File 557 bytes April 17 2025 13:10:58.
dtype.pyi File 2787 bytes April 17 2025 13:10:58.
einsumfunc.pyi File 2173 bytes April 17 2025 13:10:58.
emath.pyi File 2538 bytes April 17 2025 13:10:58.
false_positives.pyi File 349 bytes April 17 2025 13:10:58.
fft.pyi File 1852 bytes April 17 2025 13:10:58.
flatiter.pyi File 819 bytes April 17 2025 13:10:58.
fromnumeric.pyi File 13631 bytes April 17 2025 13:10:58.
getlimits.pyi File 1547 bytes April 17 2025 13:10:58.
histograms.pyi File 1391 bytes April 17 2025 13:10:58.
index_tricks.pyi File 3481 bytes April 17 2025 13:10:58.
lib_function_base.pyi File 9140 bytes April 17 2025 13:10:58.
lib_polynomial.pyi File 6353 bytes April 17 2025 13:10:58.
lib_utils.pyi File 917 bytes April 17 2025 13:10:58.
lib_version.pyi File 605 bytes April 17 2025 13:10:58.
linalg.pyi File 5217 bytes April 17 2025 13:10:58.
matrix.pyi File 3033 bytes April 17 2025 13:10:58.
memmap.pyi File 755 bytes April 17 2025 13:10:58.
mod.pyi File 5989 bytes April 17 2025 13:10:58.
modules.pyi File 1994 bytes April 17 2025 13:10:58.
multiarray.pyi File 5670 bytes April 17 2025 13:10:58.
nbit_base_example.pyi File 500 bytes April 17 2025 13:10:58.
ndarray_conversion.pyi File 1913 bytes April 17 2025 13:10:58.
ndarray_misc.pyi File 7797 bytes April 17 2025 13:10:58.
ndarray_shape_manipulation.pyi File 904 bytes April 17 2025 13:10:58.
nditer.pyi File 2067 bytes April 17 2025 13:10:58.
nested_sequence.pyi File 648 bytes April 17 2025 13:10:58.
npyio.pyi File 4434 bytes April 17 2025 13:10:58.
numeric.pyi File 6802 bytes April 17 2025 13:10:58.
numerictypes.pyi File 1711 bytes April 17 2025 13:10:58.
random.pyi File 129510 bytes April 17 2025 13:10:58.
rec.pyi File 3380 bytes April 17 2025 13:10:58.
scalars.pyi File 5347 bytes April 17 2025 13:10:58.
shape_base.pyi File 2632 bytes April 17 2025 13:10:58.
stride_tricks.pyi File 1563 bytes April 17 2025 13:10:58.
testing.pyi File 8877 bytes April 17 2025 13:10:58.
twodim_base.pyi File 3327 bytes April 17 2025 13:10:58.
type_check.pyi File 3031 bytes April 17 2025 13:10:58.
ufunc_config.pyi File 1304 bytes April 17 2025 13:10:58.
ufunclike.pyi File 1319 bytes April 17 2025 13:10:58.
ufuncs.pyi File 2919 bytes April 17 2025 13:10:58.
version.pyi File 313 bytes April 17 2025 13:10:58.
warnings_and_errors.pyi File 420 bytes April 17 2025 13:10:58.

Reading File: //opt/cloudlinux/venv/lib64/python3.11//site-packages/numpy/typing/tests//data/reveal/numeric.pyi

"""
Tests for :mod:`core.numeric`.

Does not include tests which fall under ``array_constructors``.

"""

import numpy as np
import numpy.typing as npt

class SubClass(npt.NDArray[np.int64]):
    ...

i8: np.int64

AR_b: npt.NDArray[np.bool_]
AR_u8: npt.NDArray[np.uint64]
AR_i8: npt.NDArray[np.int64]
AR_f8: npt.NDArray[np.float64]
AR_c16: npt.NDArray[np.complex128]
AR_m: npt.NDArray[np.timedelta64]
AR_O: npt.NDArray[np.object_]

B: list[int]
C: SubClass

reveal_type(np.count_nonzero(i8))  # E: int
reveal_type(np.count_nonzero(AR_i8))  # E: int
reveal_type(np.count_nonzero(B))  # E: int
reveal_type(np.count_nonzero(AR_i8, keepdims=True))  # E: Any
reveal_type(np.count_nonzero(AR_i8, axis=0))  # E: Any

reveal_type(np.isfortran(i8))  # E: bool
reveal_type(np.isfortran(AR_i8))  # E: bool

reveal_type(np.argwhere(i8))  # E: ndarray[Any, dtype[{intp}]]
reveal_type(np.argwhere(AR_i8))  # E: ndarray[Any, dtype[{intp}]]

reveal_type(np.flatnonzero(i8))  # E: ndarray[Any, dtype[{intp}]]
reveal_type(np.flatnonzero(AR_i8))  # E: ndarray[Any, dtype[{intp}]]

reveal_type(np.correlate(B, AR_i8, mode="valid"))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.correlate(AR_i8, AR_i8, mode="same"))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.correlate(AR_b, AR_b))  # E: ndarray[Any, dtype[bool_]]
reveal_type(np.correlate(AR_b, AR_u8))  # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(np.correlate(AR_i8, AR_b))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.correlate(AR_i8, AR_f8))  # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(np.correlate(AR_i8, AR_c16))  # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(np.correlate(AR_i8, AR_m))  # E: ndarray[Any, dtype[timedelta64]]
reveal_type(np.correlate(AR_O, AR_O))  # E: ndarray[Any, dtype[object_]]

reveal_type(np.convolve(B, AR_i8, mode="valid"))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.convolve(AR_i8, AR_i8, mode="same"))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.convolve(AR_b, AR_b))  # E: ndarray[Any, dtype[bool_]]
reveal_type(np.convolve(AR_b, AR_u8))  # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(np.convolve(AR_i8, AR_b))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.convolve(AR_i8, AR_f8))  # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(np.convolve(AR_i8, AR_c16))  # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(np.convolve(AR_i8, AR_m))  # E: ndarray[Any, dtype[timedelta64]]
reveal_type(np.convolve(AR_O, AR_O))  # E: ndarray[Any, dtype[object_]]

reveal_type(np.outer(i8, AR_i8))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.outer(B, AR_i8))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.outer(AR_i8, AR_i8))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.outer(AR_i8, AR_i8, out=C))  # E: SubClass
reveal_type(np.outer(AR_b, AR_b))  # E: ndarray[Any, dtype[bool_]]
reveal_type(np.outer(AR_b, AR_u8))  # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(np.outer(AR_i8, AR_b))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.convolve(AR_i8, AR_f8))  # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(np.outer(AR_i8, AR_c16))  # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(np.outer(AR_i8, AR_m))  # E: ndarray[Any, dtype[timedelta64]]
reveal_type(np.outer(AR_O, AR_O))  # E: ndarray[Any, dtype[object_]]

reveal_type(np.tensordot(B, AR_i8))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.tensordot(AR_i8, AR_i8))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.tensordot(AR_i8, AR_i8, axes=0))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.tensordot(AR_i8, AR_i8, axes=(0, 1)))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.tensordot(AR_b, AR_b))  # E: ndarray[Any, dtype[bool_]]
reveal_type(np.tensordot(AR_b, AR_u8))  # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(np.tensordot(AR_i8, AR_b))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.tensordot(AR_i8, AR_f8))  # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(np.tensordot(AR_i8, AR_c16))  # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(np.tensordot(AR_i8, AR_m))  # E: ndarray[Any, dtype[timedelta64]]
reveal_type(np.tensordot(AR_O, AR_O))  # E: ndarray[Any, dtype[object_]]

reveal_type(np.isscalar(i8))  # E: bool
reveal_type(np.isscalar(AR_i8))  # E: bool
reveal_type(np.isscalar(B))  # E: bool

reveal_type(np.roll(AR_i8, 1))  # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.roll(AR_i8, (1, 2)))  # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.roll(B, 1))  # E: ndarray[Any, dtype[Any]]

reveal_type(np.rollaxis(AR_i8, 0, 1))  # E: ndarray[Any, dtype[{int64}]]

reveal_type(np.moveaxis(AR_i8, 0, 1))  # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.moveaxis(AR_i8, (0, 1), (1, 2)))  # E: ndarray[Any, dtype[{int64}]]

reveal_type(np.cross(B, AR_i8))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.cross(AR_i8, AR_i8))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.cross(AR_b, AR_u8))  # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(np.cross(AR_i8, AR_b))  # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.cross(AR_i8, AR_f8))  # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(np.cross(AR_i8, AR_c16))  # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(np.cross(AR_O, AR_O))  # E: ndarray[Any, dtype[object_]]

reveal_type(np.indices([0, 1, 2]))  # E: ndarray[Any, dtype[{int_}]]
reveal_type(np.indices([0, 1, 2], sparse=True))  # E: tuple[ndarray[Any, dtype[{int_}]], ...]
reveal_type(np.indices([0, 1, 2], dtype=np.float64))  # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.indices([0, 1, 2], sparse=True, dtype=np.float64))  # E: tuple[ndarray[Any, dtype[{float64}]], ...]
reveal_type(np.indices([0, 1, 2], dtype=float))  # E: ndarray[Any, dtype[Any]]
reveal_type(np.indices([0, 1, 2], sparse=True, dtype=float))  # E: tuple[ndarray[Any, dtype[Any]], ...]

reveal_type(np.binary_repr(1))  # E: str

reveal_type(np.base_repr(1))  # E: str

reveal_type(np.allclose(i8, AR_i8))  # E: bool
reveal_type(np.allclose(B, AR_i8))  # E: bool
reveal_type(np.allclose(AR_i8, AR_i8))  # E: bool

reveal_type(np.isclose(i8, i8))  # E: bool_
reveal_type(np.isclose(i8, AR_i8))  # E: ndarray[Any, dtype[bool_]]
reveal_type(np.isclose(B, AR_i8))  # E: ndarray[Any, dtype[bool_]]
reveal_type(np.isclose(AR_i8, AR_i8))  # E: ndarray[Any, dtype[bool_]]

reveal_type(np.array_equal(i8, AR_i8))  # E: bool
reveal_type(np.array_equal(B, AR_i8))  # E: bool
reveal_type(np.array_equal(AR_i8, AR_i8))  # E: bool

reveal_type(np.array_equiv(i8, AR_i8))  # E: bool
reveal_type(np.array_equiv(B, AR_i8))  # E: bool
reveal_type(np.array_equiv(AR_i8, AR_i8))  # E: bool

SILENT KILLER Tool