SILENT KILLERPanel

Current Path: > > opt > hc_python > > > > lib > > python3.12 > site-packages > pydantic > v1


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //opt/hc_python////lib//python3.12/site-packages/pydantic/v1

NameTypeSizeLast ModifiedActions
__pycache__ Directory - -
__init__.py File 2946 bytes April 04 2025 08:02:35.
_hypothesis_plugin.py File 14847 bytes April 04 2025 08:02:35.
annotated_types.py File 3157 bytes April 04 2025 08:02:35.
class_validators.py File 14672 bytes April 04 2025 08:02:35.
color.py File 16844 bytes April 04 2025 08:02:35.
config.py File 6532 bytes April 04 2025 08:02:35.
dataclasses.py File 18172 bytes April 04 2025 08:02:35.
datetime_parse.py File 7724 bytes April 04 2025 08:02:35.
decorator.py File 10339 bytes April 04 2025 08:02:35.
env_settings.py File 14105 bytes April 04 2025 08:02:35.
error_wrappers.py File 5196 bytes April 04 2025 08:02:35.
errors.py File 17726 bytes April 04 2025 08:02:35.
fields.py File 50649 bytes April 04 2025 08:02:35.
generics.py File 17871 bytes April 04 2025 08:02:35.
json.py File 3390 bytes April 04 2025 08:02:35.
main.py File 44541 bytes April 04 2025 08:02:35.
mypy.py File 38774 bytes April 04 2025 08:02:35.
networks.py File 22124 bytes April 04 2025 08:02:35.
parse.py File 1821 bytes April 04 2025 08:02:35.
py.typed File 0 bytes April 04 2025 08:02:35.
schema.py File 47760 bytes April 04 2025 08:02:35.
tools.py File 2881 bytes April 04 2025 08:02:35.
types.py File 35455 bytes April 04 2025 08:02:35.
typing.py File 19387 bytes April 04 2025 08:02:35.
utils.py File 25919 bytes April 04 2025 08:02:35.
validators.py File 21996 bytes April 04 2025 08:02:35.
version.py File 1039 bytes April 04 2025 08:02:35.

Reading File: //opt/hc_python////lib//python3.12/site-packages/pydantic/v1/json.py

import datetime
from collections import deque
from decimal import Decimal
from enum import Enum
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
from pathlib import Path
from re import Pattern
from types import GeneratorType
from typing import Any, Callable, Dict, Type, Union
from uuid import UUID

from pydantic.v1.color import Color
from pydantic.v1.networks import NameEmail
from pydantic.v1.types import SecretBytes, SecretStr

__all__ = 'pydantic_encoder', 'custom_pydantic_encoder', 'timedelta_isoformat'


def isoformat(o: Union[datetime.date, datetime.time]) -> str:
    return o.isoformat()


def decimal_encoder(dec_value: Decimal) -> Union[int, float]:
    """
    Encodes a Decimal as int of there's no exponent, otherwise float

    This is useful when we use ConstrainedDecimal to represent Numeric(x,0)
    where a integer (but not int typed) is used. Encoding this as a float
    results in failed round-tripping between encode and parse.
    Our Id type is a prime example of this.

    >>> decimal_encoder(Decimal("1.0"))
    1.0

    >>> decimal_encoder(Decimal("1"))
    1
    """
    if dec_value.as_tuple().exponent >= 0:
        return int(dec_value)
    else:
        return float(dec_value)


ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = {
    bytes: lambda o: o.decode(),
    Color: str,
    datetime.date: isoformat,
    datetime.datetime: isoformat,
    datetime.time: isoformat,
    datetime.timedelta: lambda td: td.total_seconds(),
    Decimal: decimal_encoder,
    Enum: lambda o: o.value,
    frozenset: list,
    deque: list,
    GeneratorType: list,
    IPv4Address: str,
    IPv4Interface: str,
    IPv4Network: str,
    IPv6Address: str,
    IPv6Interface: str,
    IPv6Network: str,
    NameEmail: str,
    Path: str,
    Pattern: lambda o: o.pattern,
    SecretBytes: str,
    SecretStr: str,
    set: list,
    UUID: str,
}


def pydantic_encoder(obj: Any) -> Any:
    from dataclasses import asdict, is_dataclass

    from pydantic.v1.main import BaseModel

    if isinstance(obj, BaseModel):
        return obj.dict()
    elif is_dataclass(obj):
        return asdict(obj)

    # Check the class type and its superclasses for a matching encoder
    for base in obj.__class__.__mro__[:-1]:
        try:
            encoder = ENCODERS_BY_TYPE[base]
        except KeyError:
            continue
        return encoder(obj)
    else:  # We have exited the for loop without finding a suitable encoder
        raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable")


def custom_pydantic_encoder(type_encoders: Dict[Any, Callable[[Type[Any]], Any]], obj: Any) -> Any:
    # Check the class type and its superclasses for a matching encoder
    for base in obj.__class__.__mro__[:-1]:
        try:
            encoder = type_encoders[base]
        except KeyError:
            continue

        return encoder(obj)
    else:  # We have exited the for loop without finding a suitable encoder
        return pydantic_encoder(obj)


def timedelta_isoformat(td: datetime.timedelta) -> str:
    """
    ISO 8601 encoding for Python timedelta object.
    """
    minutes, seconds = divmod(td.seconds, 60)
    hours, minutes = divmod(minutes, 60)
    return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S'

SILENT KILLER Tool