Current Path: > > opt > hc_python > > > lib > python3.12 > site-packages > sqlalchemy > > util
Operation : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 Software : Apache Server IP : 162.0.232.56 | Your IP: 216.73.216.111 Domains : 1034 Domain(s) Permission : [ 0755 ]
Name | Type | Size | Last Modified | Actions |
---|---|---|---|---|
__pycache__ | Directory | - | - | |
__init__.py | File | 8312 bytes | April 04 2025 08:02:28. | |
_collections.py | File | 20078 bytes | April 04 2025 08:02:28. | |
_concurrency_py3k.py | File | 9170 bytes | April 04 2025 08:02:28. | |
_has_cy.py | File | 1247 bytes | April 04 2025 08:02:28. | |
_py_collections.py | File | 16714 bytes | April 04 2025 08:02:28. | |
compat.py | File | 8760 bytes | April 04 2025 08:02:28. | |
concurrency.py | File | 3304 bytes | April 04 2025 08:02:28. | |
deprecations.py | File | 12012 bytes | April 04 2025 08:02:28. | |
langhelpers.py | File | 65140 bytes | April 04 2025 08:02:28. | |
preloaded.py | File | 5904 bytes | April 04 2025 08:02:28. | |
queue.py | File | 10185 bytes | April 04 2025 08:02:28. | |
tool_support.py | File | 6135 bytes | April 04 2025 08:02:28. | |
topological.py | File | 3458 bytes | April 04 2025 08:02:28. | |
typing.py | File | 20920 bytes | April 04 2025 08:02:28. |
# util/topological.py # Copyright (C) 2005-2025 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """Topological sorting algorithms.""" from __future__ import annotations from typing import Any from typing import Collection from typing import DefaultDict from typing import Iterable from typing import Iterator from typing import Sequence from typing import Set from typing import Tuple from typing import TypeVar from .. import util from ..exc import CircularDependencyError _T = TypeVar("_T", bound=Any) __all__ = ["sort", "sort_as_subsets", "find_cycles"] def sort_as_subsets( tuples: Collection[Tuple[_T, _T]], allitems: Collection[_T] ) -> Iterator[Sequence[_T]]: edges: DefaultDict[_T, Set[_T]] = util.defaultdict(set) for parent, child in tuples: edges[child].add(parent) todo = list(allitems) todo_set = set(allitems) while todo_set: output = [] for node in todo: if todo_set.isdisjoint(edges[node]): output.append(node) if not output: raise CircularDependencyError( "Circular dependency detected.", find_cycles(tuples, allitems), _gen_edges(edges), ) todo_set.difference_update(output) todo = [t for t in todo if t in todo_set] yield output def sort( tuples: Collection[Tuple[_T, _T]], allitems: Collection[_T], deterministic_order: bool = True, ) -> Iterator[_T]: """sort the given list of items by dependency. 'tuples' is a list of tuples representing a partial ordering. deterministic_order is no longer used, the order is now always deterministic given the order of "allitems". the flag is there for backwards compatibility with Alembic. """ for set_ in sort_as_subsets(tuples, allitems): yield from set_ def find_cycles( tuples: Iterable[Tuple[_T, _T]], allitems: Iterable[_T] ) -> Set[_T]: # adapted from: # https://neopythonic.blogspot.com/2009/01/detecting-cycles-in-directed-graph.html edges: DefaultDict[_T, Set[_T]] = util.defaultdict(set) for parent, child in tuples: edges[parent].add(child) nodes_to_test = set(edges) output = set() # we'd like to find all nodes that are # involved in cycles, so we do the full # pass through the whole thing for each # node in the original list. # we can go just through parent edge nodes. # if a node is only a child and never a parent, # by definition it can't be part of a cycle. same # if it's not in the edges at all. for node in nodes_to_test: stack = [node] todo = nodes_to_test.difference(stack) while stack: top = stack[-1] for node in edges[top]: if node in stack: cyc = stack[stack.index(node) :] todo.difference_update(cyc) output.update(cyc) if node in todo: stack.append(node) todo.remove(node) break else: node = stack.pop() return output def _gen_edges(edges: DefaultDict[_T, Set[_T]]) -> Set[Tuple[_T, _T]]: return {(right, left) for left in edges for right in edges[left]}
SILENT KILLER Tool